Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

229 results about "Transition metal atoms" patented technology

Transition metal complexes. Transition metal atoms and ions can act as Lewis acids, accepting electron pairs from molecules or ions with electrons to spare, (Lewis bases). Definitions: A complex ion is a metal ion with lewis bases attached through covalent bonds, a metal complex or coordination compound is the same thing, but neutral.

Method for preparing lithium battery anode material lithium transition metal composite oxide

InactiveCN101916843ASolve the problem of uniform and orderly arrangementUniform average particle sizeCell electrodesTransition metal atomsComposite oxide
The invention discloses a method for preparing a lithium battery anode material lithium transition metal composite oxide, which comprises the following steps of: uniformly mixing transition metal mixed M salt and metal doped M' salt in accordance with a stoichiometric proportion in a mechanical mode; calcining at high temperature to form the transition metal composite oxide; performing secondary mechanical mixing on the transition metal composite oxide and the lithium salt; and calcining at high temperature to prepare the lithium transition metal composite oxide. By adopting a secondary mechanical mixing-solid-phase sintering process, the method solves the problems that a pure-phase quaternary lithium transition metal composite oxide cannot be synthesized by the traditional dry mixing solid-phase sintering process, and the improved wet mixing-solid-phase sintering method cannot make lithium and transition metal atoms uniformly and sequentially arranged; the lithium battery anode material lithium transition metal composite oxide has the advantages of no impurity phase, and uniform average grain diameter and excellent cycle performance of the product; and the preparation method has the advantages of simpleness, low production cost and suitability for industrial production.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

Heteroatom bridged metallocene compounds for olefin polymerization

This invention relates to a transition metal compound represented by the formula:
wherein M is a group 3, 4, 5 or 6 transition metal atom, or a lanthanide metal atom, or actinide metal atom; E is: 1) a substituted or unsubstituted indenyl ligand that is bonded to Y through the four, five, six or seven position of the indenyl ring, or 2) a substituted or unsubstituted heteroindenyl ligand that is bonded to Y through the four, five or six position of the heteroindenyl ring, provided that the bonding position is not the same as the position of the ring heteroatom, or 3) a substituted or unsubstituted fluorenyl ligand that is bonded to Y through the one, two, three, four, five, six, seven or eight position of the fluorenyl ring, or 4) a substituted or unsubstituted heterofluorenyl ligand that is bonded to Y through the one, two, three, four, five or six position of the heteroindenyl ring, provided that the bonding position is not the same as the position of the ring heteroatom; A is a substituted or unsubstituted cyclopentadienyl ligand, a substituted or unsubstituted heterocyclopentadienyl ligand, a substituted or unsubstituted indenyl ligand, a substituted or unsubstituted heteroindenyl ligand, a substituted or unsubstituted fluorenyl ligand, a substituted or unsubstituted heterofluorenyl ligand, or other mono-anionic ligand; Y is a Group 15 or 16 bridging heteroatom substituent that is bonded via the heteroatom to E and A; and X are, independently, univalent anionic ligands, or both X are joined and bound to the metal atom to form a metallocycle ring, or both X join to form a chelating ligand, a diene ligand, or an alkylidene ligand. This invention further relates to catalyst systems comprising the above transiotioon metal compounds, activators and optional supports and their use to polymerize or oligomerize olefins.
Owner:EXXONMOBIL CHEM PAT INC

Nitrogen-doped graphdiyne riveted transition metal monatomic catalyst as well as preparation method and application thereof

The invention discloses a nitrogen-doped graphdiyne riveted transition metal monatomic catalyst as well as a preparation method and application thereof. According to the catalyst, nitrogen atoms are doped in a novel carbon material graphdiyne carrier, transition metal single atoms are riveted on the surface of nitrogen-doped graphdiyne through the covalent effect between the transition metal single atoms and N and C atoms, and thus transition metal is uniformly dispersed on the surface of the nitrogen-doped graphdiyne in a single atom form to form the catalyst. Transition metal atoms in the catalyst are uniformly dispersed on the surface of the nitrogen-graphdiyne-based catalyst in a single atom state, a large number of active sites are provided for oxidation-reduction reaction, graphdiyneis adopted as a carbon substrate and has excellent morphological characteristics, formation of catalytic active sites is facilitated, and catalytic advantages of single atoms are brought into play. The catalyst disclosed by the invention has high electrocatalytic activity on oxygen reduction under an alkaline condition, is simple and effective in preparation process, low in cost and easy to popularize and put into production, and has important significance in the field of fuel cell development and application.
Owner:NANJING NORMAL UNIVERSITY

Method for immobilizing metalloporphyrin by crosslinked polystyrene microspheres

The invention belongs to the technical field of the immobilization of metalloporphyrin on a carrier, and in particular relates to a method for immobilizing metalloporphyrin by crosslinked polystyrene microspheres, which solves the problems of low immobilized amount, complex process and inconvenient operation in the conventional method for immobilizing the metalloporphyrin. The method comprises the following steps of: adding chloromethylated crosslinked polystyrene microspheres into dimethyl sulfoxide, adding NaHCO3 and KI for reaction, and drying to obtain AL-CPS; swelling the AL-CPS in a solvent, adding benzaldehyde and a catalyst, raising the temperature, dripping the solvent dissolved with pyrrole for reaction, and drying to obtain crosslinked polystyrene microspheres immobilized with porphyrin; adding the crosslinked polystyrene microspheres immobilized with the porphyrin into N,N-dimethylformamide, adding metal salts or oxides formed by transition metal atoms or lanthanide series metal atoms for reaction, and drying to obtain the crosslinked polystyrene microspheres immobilized with metalloporphyrin. The method is novel and quick; and the prepared material has high stability and can be repeatedly used.
Owner:ZHONGBEI UNIV

Preparation method for precious metal and transition metal nanowires and nano reticular material

The invention discloses a preparation method for precious metal and transition metal nanowires and a nano reticular material, and belongs to the field of nanomaterial preparation. The preparation method comprises the following steps that firstly, a Cu-Zr-Al-Ag non-crystal alloy thin belt is prepared by adopting a solution fast quenching method; then a suitable corrosive liquid is selected, chemical de-alloying processing is conducted, Zr and Al elements are removed, and a nanoporous copper silver composite material is obtained; after the end of the corrosion process, the nanoporous copper silver composite material is washed repeatedly through distilled water and absolute ethyl alcohol, after the nanoporous copper silver composite material is dried by air, precious metal or transition metal atom clusters are sputtered onto the surface of the nanoporous copper silver composite material through ion sputtering equipment, the precious metal or transition metal nanowires grow out, the diameter of the nanowires is 10-100 nm, and the nanowires grow continuously in a staggered mode to form the nano reticular material. The preparation method is simple and convenient in technology, economical and controllable in process, a prepared precious metal nanonet shows the good performance such as surface enhanced raman scattering (SERS), the broad application prospects in optics, electricity, catalysis, biology and other areas are achieved.
Owner:UNIV OF SCI & TECH BEIJING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products