Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

178 results about "Stimuli responsive" patented technology

Stimuli-responsive polymers are the type of polymeric materials defined as the responsive materials with the ability to react, sense, and respond to external condition in a predetermined shape. When stimuli-responsive polymers laminated/coated to a fabric, a smart fabric (waterproof, windproof, and breathable) is formed.

Temperature and pH stimuli-responsive intelligent polymer microcapsule and preparation thereof

The invention relates to a temperature and pH stimuli-responsive intelligent polymer microcapsule and preparation thereof. The microcapsule comprises two polymers sensitive to temperature and pH, and an interpenetrating network structure is formed between the two polymers. Preparation includes the following steps: (1) uniformly blending tetraethyl orthosilicate, aqueous ammonia, water and absolute ethyl alcohol, and then adding surface modifier; (2) adding temperature-sensitive monomer and crosslinking agent into the modified dispersion, and adding initiator for reaction; (3) after diluting the emulsion by five to fifteen times, adding pH-sensitive monomer and crosslinking agent, and adding initiator for reaction; and (4) dispersing the white emulsion of core-shell composite particles with shells formed into a interpenetrating polymer network structure into hydrofluoric acid, and carrying out centrifugal separation or dialysis purification. The microcapsule can respectively respond tothe stimulation of temperature and pH, and moreover, the two types of stimuli responsiveness are independent from each other, and therefore have little interference on each other. The preparation method is simple, and is suitable for industrial production.
Owner:DONGHUA UNIV

Preparation method and application of polymer hollow microcapsule

The invention designs a preparation method and application of a polymer hollow microcapsule. The method comprises the following steps of using nano cellulose as an emulsifier of a Pickering emulsion,adding an initiator, a monomer and a cross-linking agent into a discontinuous phase of the emulsion, afterwards, using the Pickering emulsion as a template, and preparing the polymer hollow microcapsule through the polymerization and cross linking reactions, in a liquid drop of the emulsion, of the monomer. The nano cellulose used in the method has advantages of being good in biocompatibility, wide in source, low in cost, green and environmental friendly, and the like; the range of a polymer to which the method is applicable is wide; hydrophobic and hydrophilic polymer monomers can be selectedand used; an environmental stimuli-responsive polymer or a polymer with a special function, such as a pH (potential of Hydrogen)-response, temperature-response or conducting polymer and the like, canbe selected and used; moreover, the method is simple, convenient and quick; reaction conditions are simple; the polymer hollow microcapsule is adjustable in particle size, low in cost and easy in quantity production and the obtained polymer hollow microcapsule can be used for the entrapment and the controlled release of a medicine and can be widely applied to the fields of medicines, agricultureand the like.
Owner:湖州闪思新材料科技有限公司

Self-situating stimuli-responsive polymer compositions in soil additives and methods for use

Disclosed are soil additives comprised of self-situating, stimuli-responsive polymer compositions and methods of their use. In one embodiment, the polymer composition or polymer network comprises permanent cross-links and non-permanent cross-links, wherein the non-permanent cross-links are capable of being removed upon application or exposure to a stimulus, typically located within the soil. In another embodiment, the method of increasing water retention in soils includes applying a soil additive, comprising polymer networks of the present invention admixed with an aqueous solution to form a colloidal dispersion solution or suspension, to a soil surface. The suspension or colloidal dispersion solution facilitates penetration of the polymer composition through the soil surface and into the soil, migrating typically to lower water potential areas and, more typically, along drainage channels located within the soil. After penetration of the soil surface, the polymer network is then exposed to a stimulus, typically present in the soil, whereby the non-permanent cross-links are removed and the polymer composition undergoes a volumetric change. This results in the prevention, arrest or decelerated loss of water from the targeted area, for example the plant root zone, which allows for improved water usage efficiency by plants, grasses, vegetation, etc.
Owner:RHODIA OPERATIONS SAS

Stimuli-responsive composite material made from bacterial nano cellulose as well as preparation method and application of stimuli-responsive composite material

The invention relates to a stimuli-responsive composite material made from bacterial nano cellulose as well as a preparation method and application of the stimuli-responsive composite material. A bacterial nano cellulose base material in a hydrogel state is combined with polyelectrolyte macromolecules in an interpenetrating or semi-interpenetrating manner, and then is wholly or partially dehydrated to obtain the composite material. The composite material is high in rehydration and swelling capacities under the condition of a particular Ph, and keeps the characteristics of low swelling capacity and difficulty in rehydration under the condition of an off-design Ph value. The composite material has the characteristics of temperature response; the pore size of network of the composite material can be controlled, and the penetration rate of solute molecules can be controlled to release a drug in a control manner. Meanwhile, the composite material has the characteristics of high strength, high biocompatibility and the like of the bacterial nano cellulose, and can be applied to smart wound dressings, smart drug carriers, sensors, chemical valves and the like. The composite material has the advantages that the preparation process is simple, the cost is low, and a good application prospect is achieved.
Owner:DONGHUA UNIV

Preparation method for temperature stimuli-responsive nanofiber membrane carrying with precious-metal nanorod

The invention provides a preparation method for a temperature stimuli-responsive nanofiber membrane carrying with a precious-metal nanorod. The preparation method is characterized in that the preparation method comprises the steps that temperature stimuli-responsive polymer of active groups in molecule side chain zone is prepared; the precious-metal nanorod is synthesized through a seed growing method; the temperature stimuli-responsive polymer is dissolved in distilled water and is mixed with aqueous dispersion liquid of the precious-metal nanorod, stirring is conducted to form spinning solution, electrostatic spinning is conducted on the spinning solution, and a hybrid nanofiber membrane carrying with the precious-metal nanorod is formed; heat treatment is conducted on the hybrid nanofiber membrane formed through electrostatic spinning, and the temperature stimuli-responsive nanofiber membrane carrying with the precious-metal nanorod is acquired. The prepared hybrid nanofiber membrane carrying with the precious-metal nanorod is swelled in aqueous medium, so that dissolution does not occur, the temperature stimuli responsiveness is possessed, and the temperature of volume phase transformation ranges from 40 DEG C to 43 DEG C. The hybrid nanofiber membrane possesses a potential application prospect in a surface-enhanced Raman spectroscopy detecting base, a drug control delivery carrier, a sensor and the like.
Owner:DONGHUA UNIV

Deformable stimuli responsive material and preparation method thereof and stimuli responsive flexible microelectrode array

ActiveCN107033279AAchieve three-dimensional structural transformationImprove adhesionHead electrodesExternal electrodesElectricityStimuli responsive
The invention provides a deformable stimuli responsive material which has local Young modulus differences. The deformable stimuli responsive material is formed by at least one of a thermal response material, a photo-thermal response material, a magnetic thermal response material, an electric heating response material, a humidity response material and a pH response material. The deformable stimuli responsive material can be converted into a three-dimensional structure from a plane two-dimensional structure under one or more outside stimuli conditions of temperature, light, magnetism, electricity, humidity and pH. The material is modified to the back of a planar flexible microelectrode array, so that three-dimensional deformation of the flexible microelectrode array can be implemented through outside stimuli, and precise control over controllable shaping and curvature of the conventional planar flexible microelectrode array can be implemented by further regulating the thickness or crosslinking degree and the like of the stimuli responsive material. The invention further provides a method for preparing the deformable stimuli responsive material and a stimuli responsive flexible microelectrode array.
Owner:SHENZHEN INST OF ADVANCED TECH

Preparation method and application of temperature and oxidant dual stimuli responsive nano-aggregate

InactiveCN105175656AAchieve graded and controlled releaseAchieving the role of passive targetingOrganic active ingredientsEmulsion deliveryBiocompatibility TestingCytotoxicity
The invention provides a preparation method and application of a temperature and oxidant dual stimuli responsive nano-aggregate. According to the invention, the redox inclusion principle of beta-cyclodextrin (beta-CD) and ferrocene (Fc) and the temperature sensitive properties of the polymer poly(N-isopropylacrylamide) (PNIPAM) are utilized to connect PNIPAM-beta-CD with the end containing a beta-CD host group to hydrophilic polyethylene glycol (mPEG-Fc) with the end modified by an Fc guest group in a water solution through a host-guest recognized noncovalent bond, thus forming a supramolecular complex mPEG-Fc/PNIPAM-beta-CD. When the temperature is higher than the LCST (lower critical solution temperature) of PNIPAM, the macromolecular adduct can further gather in water to form a micellar structure. Micelle formation and disintegration can be realized by adjusting the solution temperature and adding an oxidant. cytotoxicity assessment experiments find that the supramolecular complex has very good biocompatibility. The supramolecular micelle packing the anticancer drug doxorubicin has very good effect in inhibiting A549 tumor cell growth. The preparation method of the nano-aggregate is simple, environment-friendly and economical, and the nano-aggregate has great application value in the field of biological medicine.
Owner:CHENGDU INST OF BIOLOGY CHINESE ACAD OF S
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products