Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3428results about "Mechanical roughness/irregularity measurements" patented technology

Method and apparatus for characterizing semiconductor device performance variations based on independent critical dimension measurements

A method for characterizing semiconductor device performance variations includes processing a wafer in a processing line to form a feature on the wafer; measuring a physical critical dimension of the feature in a first metrology tool to generate a first critical dimension measurement; measuring the physical critical dimension of the feature in a second metrology tool to generate a second critical dimension measurement independent of the first critical dimension measurement; determining an effective critical dimension of the feature in a third metrology tool to generate a third critical dimension measurement; and comparing the first, second, and third critical dimension measurements to identify a metrology drift in one of the first and second metrology tools. A system for characterizing semiconductor device performance variations includes a processing line, first, second, and third metrology tools, and a process controller. The processing line is adapted to process a wafer to form a feature on the wafer. The first metrology tool is adapted to measure a physical critical dimension of the feature to generate a first critical dimension measurement. The second metrology tool is adapted to measure the physical critical dimension of the feature to generate a second critical dimension measurement independent of the first critical dimension measurement. The third metrology tool adapted to determine an effective critical dimension of the feature to generate a third critical dimension measurement. The process controller is adapted to compare the first, second, and third critical dimension measurements to identify a metrology drift in one of the first and second metrology tools.
Owner:ADVANCED MICRO DEVICES INC

Systems and methods for using cryptography to protect secure and insecure computing environments

Computation environments are protected from bogus or rogue load modules, executables, and other data elements through use of digital signatures, seals, and certificates issued by a verifying authority. A verifying authority—which may be a trusted independent third party—tests the load modules and/or other items to verify that their corresponding specifications are accurate and complete, and then digitally signs them based on a tamper resistance work factor classification. Secure computation environments with different tamper resistance work factors use different digital signature authentication techniques (e.g., different signature algorithms and/or signature verification keys), allowing one tamper resistance work factor environment to protect itself against load modules from another tamper resistance work factor environment. The verifying authority can provide an application intended for insecure environments with a credential having multiple elements covering different parts of the application. To verify the application, a trusted element can issue challenges based on different parts of the authenticated credential that the trusted element selects in an unpredictable (e.g., random) way, and deny service (or take other appropriate action) if the responses do not match the authenticated credential.
Owner:INTERTRUST TECH CORP

Calibration disk having discrete bands of composite roughness

A calibration disk includes calibration areas that allow a glide head to be calibrated as to the glide's head's avalanche height, fly height and the like. The calibration areas may be, for example, configured in a circumferential band (or, alternatively, a series of circumferential bands extending substantially concentric to one another), one or more spiral bands or some other suitable configuration. Such bands can, for example, extend from adjacent an outer diameter of the calibration disk to adjacent an inner portion of the calibration disk. Each of the circumferential bands is a textured area on the calibration disk having a given degree of composite roughness, as measured by the given circumferential band's average composite roughness height, and as such is referred to herein as a calibration band. Preferably, the given circumferential band is textured in a uniform manner, sufficient to produce a constant and continuous output signal from a sensor mounted on a glide head when the glide head flies lower than a maximum composite roughness height. Also preferably, the average composite roughness height within an individual calibration band is substantially uniform, and the average composite roughness height of each calibration band is slightly different from that of the other calibration bands.
Owner:KOMAG CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products