Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

301 results about "Nanodot" patented technology

Nanodot can refer to several technologies which use nanometer-scale localized structures. Nanodots generally exploit properties of quantum dots to localize magnetic or electrical fields at very small scales. Applications for nanodots could include high-density information storage, energy storage, and light-emitting devices.

Method of fabricating silicon nitride nanodots

ActiveUS7092287B2Easily be in production environmentEasy to implementNanoinformaticsRead-only memoriesNanodotNitrogen
A method of forming silicon nitride nanodots that comprises the steps of forming silicon nanodots and then nitriding the silicon nanodots by exposing them to a nitrogen containing gas. Silicon nanodots were formed by low pressure chemical vapor deposition. Nitriding of the silicon nanodots was performed by exposing them to nitrogen radicals formed in a microwave radical generator, using N2 as the source gas.
Owner:ASM INTERNATIONAL

Oxide films with nanodot flux pinning centers

InactiveUS20050159298A1Increasing critical current densitySimple and versatileMaterial nanotechnologyMolecular sieve catalystsNanodotRare-earth element
A method for producing a thin film includes disposing a precursor solution onto a substrate to form a precursor film. The precursor solution contains precursor components to a rare-earth / alkaline-earth-metal / transition-metal oxide including a salt of a rare earth element, a salt of an alkaline earth metal, and a salt of a transition metal in one or more solvents, wherein at least one of the salts is a fluoride-containing salt. The precursor solution also contains an additive component comprising one or more metal compounds capable of forming a second phase nanoparticle, either alone or in combination with one or more of the precursor components of the precursor solution or a dopant component comprising one or more metal compounds capable of substituting for an element of the rare-earth / alkaline-earth-metal / transition-metal oxide, and treating the precursor film to form an intermediate metal oxyfluoride including the rare earth, the alkaline earth metal, the transition metal and the additive metal or dopant metal of the precursor solution.
Owner:AMERICAN SUPERCONDUCTOR

Image sensor having nanodot

An image sensor includes a plurality of pixels disposed in an array, each pixel comprising a first region and a second region, the first region and the second region separated from each other in a semiconductor layer, and doped with impurities having different conductivities from each other, a photoelectric conversion region formed between the first and second regions, and at least one metal nanodot that focuses an incident light onto the photoelectric conversion region.
Owner:SAMSUNG ELECTRONICS CO LTD

Silicon-Based Light Emitting Diode for Enhancing Light Extraction Efficiency and Method of Fabricating the Same

Due to the indirect transition characteristic of silicon semiconductors, the light extraction efficiency of a silicon-based light emitting diode is lower than that of a compound semiconductor-based light emitting diode. For this reason, there are difficulties in practically using and commercializing silicon-based light emitting diodes developed so far. Provided is a silicon-based light emitting including: a substrate with a lower electrode layer on a lower surface thereof; a lower doped layer that is formed on an upper surface of the substrate and supplies carriers to an emitting layer; the emitting layer that is a silicon semiconductor layer including silicon quantum dots or nanodots formed on the lower doped layer and has a light-emitting characteristic; an upper doped layer that is formed on the emitting layer and supplies carriers to the emitting layer; an upper electrode layer formed on the upper doped layer; and a surface structure including a surface pattern formed on the upper electrode layer, a surface structure including an upper electrode pattern and an upper doped pattern formed by patterning the upper electrode layer and the upper doped layer, or a surface structure including the surface pattern, the upper electrode pattern, and upper doped pattern, wherein the surface structure enhances the light extraction efficiency of light emitted from the emitting layer according to geometric optics.
Owner:ELECTRONICS & TELECOMM RES INST

Nanodot electroluminescent diode of tandem structure and method for fabricating the same

A nanodot electroluminescent diode is disclosed. The nanodot electroluminescent diode comprises a lower electrode, an upper electrode, and unit cells interposed between the electrodes, wherein the unit cells comprise a quantum dot electroluminescent layer and also include an organic layer and / or an inorganic layer in addition to the quantum dot electroluminescent layer. The disclosed nanodot electroluminescent diode provides high efficiency, stability, and high luminance, and mixed colors, multi-colors, full color, and white electroluminescence can be obtained.
Owner:SAMSUNG ELECTRONICS CO LTD

Charge trap flash memory device and memory card and system including the same

A charge trap flash memory device and method of making same are provided. The device includes: a tunnel insulating layer, a charge trap layer; a blocking insulating layer; and a gate electrode sequentially formed on a substrate. The charge trap layer includes: plural trap layers comprising a first material having a first band gap energy level; spaced apart nanodots, each nanodot being at least partially surrounded by at least one of the trap layers, wherein the nanodots comprise a second material having a second band gap energy level that is lower than the first band gap energy level; and an intermediate blocking layer comprising a third material having a third band gap energy level that is higher than the first band gap energy level, formed between at least two of the trap layers. This structure prevents loss of charges from the charge trap layer and improves charge storage capacity.
Owner:SAMSUNG ELECTRONICS CO LTD

Nonvolatile memory device including nano dot and method of fabricating the same

A nonvolatile memory device including a nano dot and a method of fabricating the same are provided. The nonvolatile memory device may include a lower electrode, an oxide layer on the lower electrode, a nano dot in the oxide layer and an upper electrode on the oxide layer. In example embodiments, the current paths inside the oxide layer may be unified, thereby stabilizing the reset current.
Owner:SAMSUNG ELECTRONICS CO LTD

Method of forming memory with floating gates including self-aligned metal nanodots using a coupling layer

Techniques are provided for fabricating memory with metal nanodots as charge-storing elements. In an example approach, a coupling layer such as an amino functional silane group is provided on a gate oxide layer on a substrate. The substrate is dip coated in a colloidal solution having metal nanodots, causing the nanodots to attach to sites in the coupling layer. The coupling layer is then dissolved such as by rinsing or nitrogen blow drying, leaving the nanodots on the gate oxide layer. The nanodots react with the coupling layer and become negatively charged and arranged in a uniform monolayer, repelling a deposition of an additional monolayer of nanodots. In a configuration using a control gate over a high-k dielectric floating gate which includes the nanodots, the control gates may be separated by etching while the floating gate dielectric extends uninterrupted since the nanodots are electrically isolated from one another.
Owner:SANDISK TECH LLC

Method and system for detection using nanodot taggants

Described herein are methods directed to the use of the nanodot taggants in detection and / or simulation scenarios. The nanodot taggants are based on quantum dots and may be engineered so as to have particular emission and or absorbance spectral characteristics. The nanodots are extremely small, i.e., on the order of nanometers in size, and thus do not, in some cases, behave as particles, but rather are able to be carried along and through structures like a gas.
Owner:LEIDOS

Method for forming silicon oxide and metal nanopattern's, and Magnetic recording medium for information storage using the same

The present invention relates to a method for forming a silicon oxide nanopattern, in which the method can be used to easily form a nanodot or nanohole-type nanopattern, and a metal nanopattern formed by using the same can be properly applied to a next-generation magnetic recording medium for storage information, etc., a method for forming a metal nanopattern, and a magnetic recording medium for information storage using the same.The method for forming a silicon oxide nanopattern includes the steps of forming a block copolymer thin film including specific hard segments and soft segments containing a (meth)acrylate-based repeating unit on silicon oxide of a substrate; conducting orientation of the thin film; selectively removing the soft segments from the block copolymer thin film; and conducting reactive ion etching of silicon oxide using the block copolymer thin film from which the soft segments are removed, as a mask to form a silicon oxide nanodot or nanohole pattern.
Owner:LG CHEM LTD +1

Method of manufacturing memory with nano dots

A method of fabricating memory with nano dots includes sequentially depositing a first insulating layer, a charge storage layer, a sacrificial layer, and a metal layer on a substrate in which source and drain electrodes are formed, forming a plurality of holes on the resultant structure by anodizing the metal layer and oxidizing portions of the sacrificial layer that are exposed through the holes, patterning the charge storage layer to have nano dots by removing the oxidized metal layer, and etching the sacrificial layer and the charge storage layer using the oxidized sacrificial layer as a mask, and removing the oxidized sacrificial layer, depositing a second insulating layer and a gate electrode on the patterned charge storage layer, and patterning the first insulating layer, the patterned charge storage layer, the second insulating layer, and the gate electrode to a predetermined shape, for forming memory having uniformly distributed nano-scale storage nodes.
Owner:SAMSUNG ELECTRONICS CO LTD

Nanodots formed on silicon oxide and method of manufacturing the same

A nanodot material including nanodots formed on silicon oxide, and a method of manufacturing the same, is provided. The nanodot material includes a substrate, a silicon oxide layer, and a plurality of nanodots on the silicon oxide layer.
Owner:SAMSUNG ELECTRONICS CO LTD

Method of forming memory with floating gates including self-aligned metal nanodots using a coupling layer

Techniques are provided for fabricating memory with metal nanodots as charge-storing elements. In an example approach, a coupling layer such as an amino functional silane group is provided on a gate oxide layer on a substrate. The substrate is dip coated in a colloidal solution having metal nanodots, causing the nanodots to attach to sites in the coupling layer. The coupling layer is then dissolved such as by rinsing or nitrogen blow drying, leaving the nanodots on the gate oxide layer. The nanodots react with the coupling layer and become negatively charged and arranged in a uniform monolayer, repelling a deposition of an additional monolayer of nanodots. In a configuration using a control gate over a high-k dielectric floating gate which includes the nanodots, the control gates may be separated by etching while the floating gate dielectric extends uninterrupted since the nanodots are electrically isolated from one another.
Owner:SANDISK TECH LLC

Carbon dots, preparation method therefor, carbon-dot composite material, preparation method therefor and luminescent LED (Light Emitting Diode)

The invention provides a preparation method for carbon dots. The preparation method comprises the steps: mixing citric acid and urea in a solvent, and then, carrying out heating, so as to obtain a reaction solution; and carrying out centrifugal separation on the reaction solution, so as to obtain precipitates, i.e., the carbon dots, wherein the solvent is one or a mixture of two of water, glycerine and dimethylformamide. According to method, visible-light-all-waveband-luminescent carbon dots are prepared through adopting different solvents, and thus, the carbon-dot composite material provided by the invention can emit light in all wave band of visible light, particularly, white-light carbon-dot composite materials of different color coordinates and color temperatures can be obtained by adopting the carbon dots of different colors. Furthermore, the carbon-dot composite material provided by the invention employs silicon dioxide as a dispersion matrix, so that gathered induced fluorescence quenching can be inhibited, and the composite material has relatively high quantum efficiency. The invention further provides the preparation method for the carbon dots, the carbon-dot composite material, a preparation method therefor and a luminescent LED (Light Emitting Diode).
Owner:CHANGCHUN INST OF OPTICS FINE MECHANICS & PHYSICS CHINESE ACAD OF SCI

Method of forming nano dots, method of fabricating the memory device including the same, charge trap layer including the nano dots and memory device including the same

InactiveUS20090101964A1Prevent or reduce a memory characteristic of nano dots from degradingDecorative surface effectsNanoinformaticsNanodotMetal particle
Provided are a method of forming nano dots, method of fabricating a memory device including the same, charge trap layer including the nano dots and memory device including the same. The method of forming the nano dots may include forming cores, coating surfaces of the cores with a polymer, and forming graphene layers covering the surfaces of the cores by thermally treating the cores coated with the polymer. Also, the cores may be removed after forming the graphene layers. In addition, the surfaces of the cores may be coated with a graphitization catalyst material before coating the cores with the polymer. Also, the cores may include metal particles that trap charges and may also function as a graphitization catalyst.
Owner:SAMSUNG ELECTRONICS CO LTD

Method and system for countering laser technology

ActiveUS7035308B1Easy to addMaterial nanotechnologyChemical warfare equipmentNanodotLaser technology
Described herein is a method and system for providing a countermeasure against laser detection systems using nanocomponent material that is tailored to cloak or obscure a target from detection by transmitted laser radiation. The nanodot material absorbs and / or down-converts the transmitted laser radiation. Similarly, described herein is a method and system for providing a countermeasure against laser systems intended to blind a target through the use of a specifically engineered nanocomponent material for absorbing and / or down-converting the radiation from the laser system.
Owner:LEIDOS

Flexible nanodot resistive random access memory (RRAM) based on all low-temperature process and manufacturing method thereof

The invention belongs to the technical of low-temperature Atomic Layer Deposition (ALD), and particularly relates to a flexible nanodot resistive random access memory (RRAM) based on all low-temperature process and a manufacturing method thereof. The method comprises the steps: at first, growing a bottom electrode on a flexible substrate by using a low temperature PVD (Physical Vapor Deposition) method, then growing an oxide layer through a low temperature ALD method; growing nanodots and then growing another oxide layer through the low temperature ALD method;and finally growing a top electrode. The nanodots accessed to the oxide layer can effectively improve the stability of high / low resistant state transformation of the RRAM and reduce the occurrence possibility of errors, thereby solving the problems regarding reliability and practicability. The method can be applied to the manufacturing of flexible low-temperature memory in the future, and change the packaging and existing manner of the memory at present, enables the folding and bending of portable memories to be possible.
Owner:FUDAN UNIV

Enhancing performance in ink-jet printed organic semiconductors

InactiveUS20070275498A1Improve performanceMinimize occurrence of cloggingMaterial nanotechnologySolid-state devicesNanodotNanowire
Systems and methods are provided to improve the performance of electronic and optoelectronic devices made using organic semiconductor processing technology. An ink-jet device dispenses an organic composite mixture onto a substrate. The mixture includes a semiconducting polymer and nanomaterials dispersed into an organic solvent. The type of solvent used preferably achieves effective dispersion of the polymer and nanomaterials in the solvent to minimize the occurrence of clogging of the ink-jet nozzles. The range of nanomaterials include, but are not limited to, organic and inorganic, single or multi-walled nanotubes, nanowires, nanodots, quantum dots, nanorods, nanocrystals, nanotetrapods, nanotripods, nanobipods, nanoparticles, nanosaws, nanosprings, nanoribbons, any branched nanostructure, and any mixture of these nanoshaped materials. The nanostructures can be aligned on the substrate to improve the carrier mobility in the organic semiconductors.
Owner:CUTS

Method and System For Detection Using Nanodot Taggants

Described herein are methods directed to the use of the nanodot taggants in detection and / or simulation scenarios. The nanodot taggants are based on quantum dots and may be engineered so as to have particular emission and or absorbance spectral characteristics. The nanodots are extremely small, i.e., on the order of nanometers in size, and thus do not, in some cases, behave as particles, but rather are able to be carried along and through structures like a gas.
Owner:LEIDOS

Silver nano lattice surface enhanced raman active substrate and preparation method thereof

The invention discloses a silver nano lattice surface enhanced raman active substrate and a preparation method thereof. According to the substrate, silicon single crystal is used as an underlay; a silver nanoparticle array structure is deposited on the silicon surface; the particle size of the silver nanoparticles is 30-90 nm; and the center distance of the particles is 99-111 nm. The silver nano lattice surface enhanced raman active substrate provided by the invention has a uniform shape and a controllable structure, and has an obvious surface raman enhancement effect on analytes of different concentrations, and an enhancement signal is uniform and stable. According to the method, the structural parameters and the shape of a silver nano lattice can be adjusted according to structural parameters of an ultra-thin aluminum oxide template, so that different influences of different metal nano lattice substrates on a raman surface enhancement effect are realized. The substrate and the method have the advantages of easiness for operation, low cost and easiness for industrial production.
Owner:SHANGHAI UNIV

Nanowires comprising metal nanodots and method for producing the same

Nanowires methods for producing the nanowires are provided. The nanowires include a plurality of metal nanodots uniformly disposed therein, and a core portion, wherein each of the plurality of metal nanodots is coupled to the core portion. According to the method, metal nanodots can be uniformly disposed in the nanowires, and nanowires having various physical properties can be produced by controlling the size and interval of the nanodots. Therefore, the nanowires can be effectively used in a variety of applications, including electronic devices, such as field effect transistors (FETs), sensors, photodetectors, light emitting diodes (LEDs), and laser diodes (LDs).
Owner:SAMSUNG ELECTRONICS CO LTD

Novel ultrananocrystalline diamond probes for high-resolution low-wear nanolithographic techniques

A monolithically integrated 3-D membrane or diaphragm / tip (called 3-D tip) of substantially all UNCD having a tip with a radius of about less than 50 nm capable of measuring forces in all three dimensions or being used as single tips or in large arrays for imprint of data on memory media, fabrication of nanodots of different materials on different substrates and many other uses such as nanolithography production of nanodots of biomaterials on substrates, etc. A method of molding UNCD is disclosed including providing a substrate with a predetermined pattern and depositing an oxide layer prior to depositing a carbide-forming metallic seed layer, followed by seeding with diamond nano or micropowder in solvent suspension, or mechanically polishing with diamond powder, or any other seeding method, followed by UNCD film growth conforming to the predetermined pattern. Thereafter, one or more steps of masking and / or etching and / or coating and / or selective removal and / or patterning and / or electroforming and / or lapping and / or polishing are used in any combination to form the tip or probe.
Owner:UCHICAGO ARGONNE LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products