Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

595results about How to "Improve equipment reliability" patented technology

Method of epitaxial growth effectively preventing auto-doping effect

This invention relates to a method of epitaxial growth effectively preventing auto-doping effect. This method starts with the removal of impurities from the semiconductor substrate having heavily-doped buried layer region and from the inner wall of reaction chamber to be used. Then the semiconductor substrate is loaded in the cleaned reaction chamber to be pre-baked under vacuum conditions so as to remove moisture and oxide from the surface of said semiconductor substrate before the extraction of the dopant atoms desorbed from the surface of the semiconductor substrate. Next, under high temperature and low gas flow conditions, a first intrinsic epitaxial layer is formed on the surface of said semiconductor substrate where the dopant atoms have been extracted out. Following this, under low temperature and high gas flow conditions, a second epitaxial layer of required thickness is formed on the structural surface of the grown intrinsic epitaxial layer. Last, silicon wafer is unloaded after cooling. This method can prevent auto-doping effect during the epitaxial growth on semiconductor substrate and thus ensure the performance and enhance the reliability of the devices in peripheral circuit region.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI

Organic light emitting diode display

This invention relates to an organic light emitting diode display device that is adaptive for preventing a characteristic change of a device which drives the organic light emitting diode and for securing reliability of the device. The organic light emitting diode display device includes: a pixel array having a plurality of scan lines and a plurality of data lines that cross each other, a plurality of power voltage supply lines to which a high level power supply voltage is supplied and that are substantially parallel to the data lines, a plurality of reset lines substantially parallel to the scan lines, a plurality of organic light emitting diodes that emit light due to the high level power supply voltage from the power voltage supply line, and a plurality of organic light emitting diode drive circuits that drive the organic light emitting diode with data from the data line in response to a scan signal from the scan line and that is initialized in response to a reset signal from the reset line; a scan drive circuit that supplies the scan signal to the scan lines; a reset drive circuit that supplies the reset signal to the reset lines that initializes the organic light emitting diode drive circuit; and a data drive circuit that supplies the data to the data lines respectively, wherein the scan drive circuit and the reset drive circuit are on a substrate including the pixel array.
Owner:LG DISPLAY CO LTD

Three-Dimensional Semiconductor Device and Manufacturing Method Therefor

A three-dimensional semiconductor device, comprising a plurality of memory cell transistors and a plurality of select transistors at least partially overlapped in the vertical direction, wherein each select transistor comprises a first drain, an active region and a common source formed in the substrate, distributed along the vertical direction, as well as a metal gate distributed around the active region; wherein each memory cell transistor comprises a channel layer distributed perpendicularly to the substrate surface, a plurality of inter-layer insulating layers and a plurality of gate stack structures alternately stacked along the sidewalls of said channel layer, a second drain located on top of said channel layer; wherein said channel layer and said the first drain are electrically connected. In accordance with the three-dimensional semiconductor memory device and manufacturing method of the present invention, the multi-gate MOSFET is formed beneath the stack structure of the memory cell string including vertical channel to serve as the select transistor, this can improve the control characteristics of the gate threshold voltage, reduce the off-state leakage current, prevent the substrate from over-etching, and effectively improve the reliability of the device.
Owner:INST OF MICROELECTRONICS CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products