Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

68 results about "Electronic states" patented technology

High spatial resolution imaging of a structure of interest in a specimen

For high spatial resolution imaging of a structure of interest in a specimen, a substance is selected from a group of substances which have two different electronic states: a fluorescent first state and a nonfluorescent second state; which can be converted fractionally from their first state into their second state by light which excites them into fluorescence, and which return from their second state into their first state; the specimen's structure of interest is imaged onto a sensor array, a spatial resolution limit of the imaging being greater (i.e. worse) than an average spacing between closest neighboring molecules of the substance in the specimen; the specimen is exposed to light in a region which has dimensions larger than the spatial resolution limit, fractions of the substance alternately being excited by the light to emit fluorescent light and converted into their second state, and at least 10% of the molecules of the substance that are respectively in the first state lying at a distance from their closest neighboring molecules in the first state which is greater than the spatial resolution limit; and the fluorescent light, which is spontaneously emitted by the substance from the region, is registered in a plurality of images recorded by the sensor array during continued exposure of the specimen to the light.
Owner:MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN EV

Anti-thrombosis and anti-infection titanium alloy implantation instrument with alveolate porous structure

ActiveCN109730802AExcellent super hemophobic performanceAvoid stickingStentsHeart valvesNiti alloyMicro nano
The invention relates to an anti-thrombosis and anti-infection titanium alloy implantation instrument with an alveolate porous structure and belongs to the technical field of surface modification of metal materials. According to the method, a traditional femtosecond laser shaping mode is replaced with a femtosecond laser dual-pulse mode, correspondingly a local instantaneous electronic state of amaterial is adjusted and controlled, and different micro-nano composite structures can be prepared. Through dynamic regulation and control of electrons, the unique alveolate porous structure is finally processed. According to the structure, the static contact angle between the structure and fresh rabbit blood is 143.4 degrees +/- 2.6 degrees, and the rolling angle is 8.5 degrees +/- 2 degrees. Because a fluorinated material has low surface energy, certain frictional resistance and excellent bactericidal and antithrombotic capability, by conducting fluorination treatment on a NiTi alloy surfaceof the alveolate porous structure, a super blood dispersing surface is obtained, wherein the static contact angle between the super blood dispersing surface and the fresh rabbit blood is 167.3 degrees +/-3.2 degrees, and the rolling angle of the super blood dispersing surface is 1.6 degrees +/- 0.3 degree; meanwhile, the obtained surface also has excellent antibacterial performance. The method isapplicable to the surfaces of titanium alloy materials different in size and shape.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products