Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

99 results about "Maxwell's equations" patented technology

Maxwell's equations are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar etc. Maxwell's equations describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. An important consequence of the equations is that they demonstrate how fluctuating electric and magnetic fields propagate at a constant speed (c) in a vacuum. Known as electromagnetic radiation, these waves may occur at various wavelengths to produce a spectrum of light from radio waves to γ-rays. The equations are named after the physicist and mathematician James Clerk Maxwell, who between 1861 and 1862 published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon.

Marine controlled source electromagnetic method finite element forward method of anisotropic media

The present invention is a marine controlled source electromagnetic method finite element forward method of anisotropic media. The method comprises: firstly, setting a reference electrical conductivity, wherein three non-zero diagonal elements of the reference electrical conductivity are electrical conductivities in the direction of three main axes: x, y, z; next, setting three Euler rotation angles, and after three times of Euler rotation, obtaining an electrical conductivity tensor model in any direction; then starting from Maxwell equations, obtaining a finite element equation that is satisfied by magnetic vector potential and scalar potential under Coulomb regulations on a condition that the electrical conductivity presents anisotropy; then, performing discrete segmentation on a research region by using a non-structural grid, so that a complicated geoelectric model can be constructed; combining an incomplete LU discomposition pre-condition factor with an IDR(s) algorithm, so as to realize efficient and precise solution of a large sparse linear equation; and finally, deriving vector potential and scalar potential of a secondary field by using weighted moving least squares solution, to obtain each component of an electromagnetic field. The method provided by the present invention has excellent universality and can be promoted for electromagnetic method numerical value simulation with complicated electrical conductivity distribution and high precision.
Owner:JILIN UNIV

MPM hybrid algorithm applied to numerical simulation of ECR ion source

The invention belongs to the field of numerical simulation technology of ECR ion sources, and particularly relates to an MPM hybrid algorithm applied to numerical simulation of an ECR ion source. Thealgorithm is suitable for use in an ECR ion source structure. The MPM hybrid algorithm of simulation of the ECR ion source is established through combining an MAGY theory and PIC/MCC simulation algorithms, a time-varying electromagnetic field is described by the MAGY theory, self-consistent interaction of charged particles and the electromagnetic field is described by the PIC algorithm, and inter-particle collision processes are described by the MCC algorithm. A complex and complete solving process which originally needs to be carried out on Maxwell's equations is enabled to be simplified to solving on a set of coupled one-dimensional partial differential equations about mode amplitudes, relatively larger time step length can also be taken due to that compared with high-frequency cycles, changes of the mode amplitudes are slower, and computational complexity and a computational amount are greatly reduced. In addition, an electromagnetic model is adopted, and thus compared with adoptingan electrostatic model, the algorithm can more accurately describe an actual physical process.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Caching of intra-layer calculations for rapid rigorous coupled-wave analyses

The diffraction of electromagnetic radiation from periodic grating profiles is determined using rigorous coupled-wave analysis, with intermediate calculations cached to reduce computation time. To implement the calculation, the periodic grating is divided into layers, cross-sections of the ridges of the grating are discretized into rectangular sections, and the permittivity, electric fields and magnetic fields are written as harmonic expansions along the direction of periodicity of the grating. Application of Maxwell's equations to each intermediate layer, i.e., each layer except the atmospheric layer and the substrate layer, provides a matrix wave equation with a wave-vector matrix A coupling the harmonic amplitudes of the electric field to their partial second derivatives in the direction perpendicular to the plane of the grating, where the wave-vector matrix A is a function of intra-layer parameters and incident-radiation parameters. W is the eigenvector matrix obtained from wave-vector matrix A, and Q is a diagonal matrix of square roots of the eigenvalues of the wave-vector matrix A. The requirement of continuity of the fields at boundaries between layers provides a matrix equation in terms of Wand Q for each layer boundary, and the solution of the series of matrix equations provides the diffraction reflectivity. Look-up of W and Q, which are precalculated and cached for a useful range of intra-layer parameters (i.e., permittivity harmonics, periodicity lengths, ridge widths, ridge offsets) and incident-radiation parameters (i.e., wavelengths and angles of incidence), provides a substantial reduction in computation time for calculating the diffraction reflectivity.
Owner:TOKYO ELECTRON US HOLDINGS INC

Electric dipole source three-dimensional time domain finite difference direct interpretation imaging method

The invention relates to an electric dipole source three-dimensional time domain finite difference direct interpretation imaging method. The method includes the steps of loading Gaussian pulses on an electric dipole source, establishing Maxwell equations and constitutive equations for the ocean air space, the seawater space and the seabed ground space, conducting uniform mesh generation on prism object models of the three spaces, obtaining difference equations of seawater and the seabed ground through a time domain finite difference method according to meshes obtained through mesh generation by consuming that the conductivities and the magnetic conductivities of all the meshes obtained through mesh generation are unchanged, processing the Maxwell equations of ocean air through analysis solutions, calculating the electromagnetic field of the air above the sea surface, processing the boundary conditions of the generation space, setting stabilization conditions, solving the established difference equations through the combination with the processing results of the boundary conditions and the set stability conditions, and obtaining the distribution of the electromagnetic field of the seawater and the seabed ground at any moment.
Owner:CHINA NAT OFFSHORE OIL CORP +2

Microwave passive circuit electromagnetic heat integral analysis method based on time domain spectrum element method

ActiveCN104050307AGood mannersQuickly obtain temperature distributionSpecial data processing applicationsMaxwell's equationsEngineering
The invention discloses a microwave passive circuit electromagnetic heat integral analysis method based on a spectrum element method. According to the method, firstly, a time domain spectrum element method is adopted for solving maxwell's equations, the instantaneous electric field and magnetic field distribution of a circuit under the effect of high-power pulses is worked out, and the electromagnetic loss at the current moment is obtained. If all of the electromagnetic loss inside a mold is converted into heat energy, the obtained heat energy is substituted into a heat conduction equation, and the temperature distribution conditions of each point at the current moment are obtained. Electricity characteristic parameters of materials at a next moment are obtained by utilizing a relational expression of dielectric parameters along with the temperature change, an electromagnetic field equation is calculated again, and the electromagnetic loss is obtained. The operation is repeatedly cycled in such a way until the preset heating time is completed. Through the electromagnetic heat integral analysis, the distribution condition of the temperature inside the mold along the time change when a filter receives the effect of different pulses can be clearly obtained, the modeling is flexible, the subdivision is convenient, formed matrixes have good sparsity, and the solving efficiency is higher.
Owner:NANJING UNIV OF SCI & TECH

Method and apparatus for optically measuring the topography of nearly planar periodic structures

The present invention discloses a non-destructive method and apparatus for measuring the 3D topography of a sample having periodic microstructure deposited onto the surface, or deposited onto a film, or buried into the film or sample. In particular, the present invention relates to an optical system and method utilizing polarized light beam, diffracted from the repeated structure, to measure its spatial geometry giving parameters such as profile height, profile widths, sidewall angles, and arbitrary profile shape. The optical system employs a broadband or semi-monochromatic light source to produce a light beam that is polarized and focused onto the periodic structure being measured. The focused beam consists of a whole range of illumination angles that is provided to the structure simultaneously. Transmitted or reflected diffracted light generated by the interaction of the light with the periodic structure is collected by an imaging detector system. The detector records the diffraction light irradiance resolved into illumination angles, diffraction orders and wavelength. The data is applied to determine the geometrical profile of the periodic structure using a reconstruction algorithm that is based on comparisons between measured diffraction data and modeled diffraction irradiance of a profile model using Maxwell's equations. The reconstruction of the profile is performed by iterative adjustments of a profile seed model until the modeled diffraction irradiance matches the measured data within a predefined convergence tolerance.
Owner:DANSK FUNDAMENTAL METROLOGI

Method for accurately calculating electromagnetic scattering of bianisotropic medium ball

InactiveCN103235888AElectromagnetic scattering appliesSpecial data processing applicationsMaxwell's equationsCondensed matter physics
The invention provides a method for accurately calculating electromagnetic scattering of a bianisotropic medium ball. The method comprises the steps of 1, using passive maxwell's equations and an intrinsic equation of a bianisotropic medium to deduce a differential equation of the magnetic induction intensity B; 2, expressing factors related to the B in the differential equation in the form of spherical vector wave functions, then using orthogonality properties of spherical vector wave functions M and N to obtain a parameter-contained matrix equation, firstly, calculating parameters of the matrix equation under the condition that the matrix equation meets a non-zero solution, and then substituting parameters into the parameter-contained matrix equation to obtain the non-zero solution of the matrix equation; and 3, constructing a new function, expressing the magnetic induction intensity B again through the new function, then an electromagnetic field inside the medium ball is calculated, and substituting the electromagnetic field inside the medium ball and an incident electromagnetic field and a scattering electromagnetic field outside the ball into boundary conditions to obtain a scattering matrix. The method is applicable to solving of the electromagnetic scattering of the bianisotropic medium ball of the small electrical size.
Owner:HANGZHOU DIANZI UNIV

Microwave component micro-discharge numerical simulation method based on GPU architecture

The invention relates to a microwave component micro-discharge numerical simulation method based on a GPU architecture, which comprises the following steps of: 1) establishing a three-dimensional model of a microwave component, determining a material of the three-dimensional model and secondary electron emission characteristic parameters of the material, and determining micro-discharge simulationparameters of the microwave component; 2) establishing a grid model of the microwave component three-dimensional model and a particle model of micro-discharge electrons; 3) determining initial distribution of an electromagnetic field and initial distribution of particles in the three-dimensional model grid model; 4) solving a Maxwell equation set in each small grid based on a GPU technology to iteratively update electromagnetic field distribution, and obtaining all electromagnetic field values of M time steps; and 5) solving the Lorentz force equation set to iteratively update the particle motion, obtaining the total particle number of each time step of the M time steps, completing the micro-discharge numerical simulation when the input power is P, and determining whether the micro-discharge occurs or not when the input power is P.
Owner:XIAN INSTITUE OF SPACE RADIO TECH

Label reception power prediction method of ultra high frequency (UHF) radio frequency identification (RFID) electronic toll collection (ETC) applications

The present invention discloses a label reception power prediction method of UHF RFID ETC applications. The method comprises the steps of setting a reader antenna as a Cartesian coordinate origin, setting the Cartesian coordinate of a label as unknown, and solving a first-order reflection surface equation by the application scene geometrical parameters and the geometrical relationships, namely a plane equation of an automobile engine hood plane, a left temporary road vehicle right side surface and a right temporary road left side surface; by a free space radio wave propagation formula, calculating a visual range electric field intensity vector from the reader antenna to the label; separately calculating the coordinates of the reflection points on the above reflection surface; by a first-order reflection matrix equation of an electromagnetic wave, separately calculating the electric field intensity vectors of an incident wave and a reflection wave arriving at the label at the reflection surface; solving the label electric field vector sum, a label chip antenna port matching coefficient and a polarization matching coefficient, and finally obtaining a label reception power calculation result in the space. The label reception power prediction method of the present invention can obtain a higher prediction precision than the conventional lognormal model and Leslie Model, and obtain the prediction speed more convenient and faster than a commercial electromagnetic calculation software based on Maxwell's equations.
Owner:HUNAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products