Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

560 results about "Excitation beam" patented technology

System and method for a transparent color image display utilizing fluorescence conversion of nano particles and molecules

A system and a method of a transparent color image display utilizing fluorescence conversion (FC) of nano-particles and molecules are disclosed. In one preferred embodiment, a color image display system consists of a light source equipped with two-dimensional scanning hardware and a FC display screen board. The FC display screen board consists of a transparent fluorescence display layer, a wavelength filtering coating, and an absorption substrate. In another preferred embodiment, two mechanisms of light excitation are utilized. One of the excitation mechanisms is up-conversion where excitation light wavelength is longer than fluorescence wavelength. The second mechanism is down-conversion where excitation wavelength is shorter than fluorescence wavelength. A host of preferred fluorescence materials for the FC screen are also disclosed. These materials fall into four categories: inorganic nanometer sized phosphors; organic molecules and dyes; semiconductor based nano particles; and organometallic molecules. These molecules or nano-particles are incorporated in the screen in such a way that allows the visible transparency of the screen. Additionally, a preferred fast light scanning system is disclosed. The preferred scanning system consists of dual-axes acousto-optic light deflector, signal processing and control circuits equipped with a close-loop image feedback to maintain position accuracy and pointing stability of the excitation beam.
Owner:SUN INNOVATIONS

Optical sensor with layered plasmon structure for enhanced detection of chemical groups by SERS

An optical sensor and method for use with a visible-light laser excitation beam and a Raman spectroscopy detector, for detecting the presence chemical groups in an analyte applied to the sensor are disclosed. The sensor includes a substrate, a plasmon resonance mirror formed on a sensor surface of the substrate, a plasmon resonance particle layer disposed over the mirror, and an optically transparent dielectric layer about 2-40 nm thick separating the mirror and particle layer. The particle layer is composed of a periodic array of plasmon resonance particles having (i) a coating effective to binding analyte molecules, (ii) substantially uniform particle sizes and shapes in a selected size range between 50-200 nm (ii) a regular periodic particle-to-particle spacing less than the wavelength of the laser excitation beam. The device is capable of detecting analyte with an amplification factor of up to 1012-1014, allowing detection of single analyte molecules.
Owner:POPONIN VLADIMIR

Multi-channel optical detection system

An apparatus for thermally controlling and optically interrogating a reaction mixture includes a vessel [2] having a chamber [10] for holding the mixture. The apparatus also includes a heat-exchanging module [37] having a pair of opposing thermal plates [34A, 34B] for receiving the vessel [2] between them and for heating / and or cooling the mixture contained in the vessel. The module [37] also includes optical excitation and detection assemblies [46,48] positioned to optically interrogate the mixture. The excitation assembly [46] includes multiple light sources [100] and a set of filters for sequentially illuminating labeled analytes in the mixture with excitation beams in multiple excitation wavelength ranges. The detection assembly [48] includes multiple detectors [102] and a second set of filters for detecting light emitted from the chamber [10] in multiple emission wavelength ranges. The optics assemblies [46,48] thus provide a multi-channel system for detecting a plurality of different target analytes in the mixture.
Owner:CEPHEID INC

Optical sensor with layered plasmon structure for enhanced detection of chemical groups by SERS

An optical sensor and method for use with a visible-light laser excitation beam and a Raman spectroscopy detector, for detecting the presence chemical groups in an analyte applied to the sensor are disclosed. The sensor includes a substrate, a plasmon resonance mirror formed on a sensor surface of the substrate, a plasmon resonance particle layer disposed over the mirror, and an optically transparent dielectric layer about 2-40 nm thick separating the mirror and particle layer. The particle layer is composed of a periodic array of plasmon resonance particles having (i) a coating effective to binding analyte molecules, (ii) substantially uniform particle sizes and shapes in a selected size range between 50-200 nm (ii) a regular periodic particle-to-particle spacing less than the wavelength of the laser excitation beam. The device is capable of detecting analyte with an amplification factor of up to 1012-1014, allowing detection of single analyte molecules.
Owner:POPONIN VLADIMIR

Illumination device and projector

An illumination device includes: a light source device adapted to emit an excitation light beam; and a rotating fluorescent plate having a single fluorescent layer adapted to convert a part or whole of the excitation light beam into a fluorescent light beam. The fluorescent light beam includes two or more colored light beams, and the single fluorescent layer is formed on a circular disk, which can be rotated by a motor, continuously along a circumferential direction of the circular disk.
Owner:SEIKO EPSON CORP

Photoacoustic remote sensing (PARS)

A photoacoustic remote sensing system (PARS) for imaging a subsurface structure in a sample has an excitation beam configured to generate ultrasonic signals in the sample at an excitation location; an interrogation beam incident on the sample at the excitation location, a portion of the interrogation beam returning from the sample that is indicative of the generated ultrasonic signals; an optical system that focuses at least one of the excitation beam and the interrogation beam with a focal point that is below the surface of the sample; and a detector that detects the returning portion of the interrogation beam.
Owner:ILLUMISONICS INC

Identifying or measuring selected substances or toxins in a subject using resonant raman signals

InactiveUS6961599B2Pass more efficientlySystemic amount can be more closely regulated and reducedRaman scatteringDiagnostic recording/measuringExcitation beamAnalyte
Methods and systems of the present invention identify the presence of and / or the concentration of a selected analyte in a subject by: (a) illuminating a selected region of the eye of a subject with an optical excitation beam, wherein the excitation beam wavelength is selected to generate a resonant Raman spectrum of the selected analyte with a signal strength that is at least 100 times greater than Raman spectrums generated by non-resonant wavelengths and / or relative to signals of normal constituents present in the selected region of the eye; (b) detecting a resonant Raman spectrum corresponding to the selected illuminated region of the eye; and (c) identifying the presence, absence and / or the concentration of the selected analyte in the subject based on said detecting step. The apparatus may also be configured to be able to obtain biometric data of the eye to identify (confirm the identity of) the subject.
Owner:CALIFORNIA INST OF TECH +1

Medical Device For Diagnosing and Treating Anomalous Tissue and Method for Doing the Same

Disclosed herein are medical devices for diagnosing and treating anomalous tissue and methods of use. One embodiment of the medical device can comprise an energy source configured to emit at least an excitation beam and a therapeutic beam, a probe coupled to the energy source and configured to propagate the excitation and therapeutic beams with the beams capable of contact with the tissue, a sensor coupled to the probe that detects at least one predefined attribute of radiation emanating from the tissue when the tissue is subjected to the excitation beam and a controller coupled to the energy source and the sensor and programmed to selectively alternatively actuate the energy source to emit the excitation beam and the therapeutic beam in response to the detection of the at least one predefined attribute by the sensor.
Owner:BECKMAN HUGH +2

Confocal scanning microscope

A confocal scanning microscope includes a stimulating light beam scanning unit that scans at least a predetermined plane perpendicular to the depth direction of the stimulating light beam focal position, a stimulating light beam scanning control unit that controls the scanning area of the stimulating light beam to a desired area, an exciting light beam scanning control unit that controls the scanning area of the exciting light beam to a desired area, an exciting light beam focal position changing unit, provided in an excitation fluorescence optical path, which is a portion of an optical path where the exciting light beam and the fluorescence pass and located outside a common optical path where the exciting light beam, the fluorescence, and the stimulating light beam pass, that changes at least the exciting light beam focal position in the depth direction, and an exciting light beam control unit that controls the exciting light beam focal position variably to a desired position.
Owner:EVIDENT CORP

Method, Apparatus and System for Rapid and Sensitive Standoff Detection of Surface Contaminants

Systems and methods for fast and sensitive standoff surface-hazard detection with high data throughput, high spatial resolution and high degree of pointing flexibility. The system comprises a first hand-held unit that directs an excitation beam onto a surface that is located a distance away from the first unit and an optical subsystem that captures scattered radiation from the surface as a result of the beam of light. The first unit is connected via a link that includes a bundle of optical fibers, to a second unit, called the processing unit. The processing unit comprises a fiber-coupled spectrograph to convert scattered radiation to spectral data, and a processor that analyzes the collected spectral data to detect and / or identify a hazardous substance. The second unit may be contained within a body-wearable housing or apparatus so that the first unit and second unit together form a man-portable detection assembly. In one embodiment, the system can continuously and without interruptions scan a surface from a 1-meter standoff while generating Raman spectral-frames at rates of 25 Hz.
Owner:PERATON INC

Plasma radiation source

The object of a plasma radiation source is to ensure a more effective protection against debris and, in particular, to counteract secondary sputtering. A target flow that is provided by a target generator by means of a target nozzle and a plasma that is generated by a pulsed excitation beam are enclosed within a vacuum chamber by a gas flow directed transverse to the optical axis.
Owner:XTREME TECH

Device For Assisting In Finding An Article

An apparatus for assisting in finding an article such as a golf ball (2) includes a housing (3) containing a laser diode (4) for radiating an excitation beam (5) in the UV or IR bands. The apparatus has a receiving lens (9) for receiving a return beam (8) sent back from the golf ball (2) by the fluorescent coating on the ball. The return beam (8) falls on a photodiode receiver (10) after passing through two filters (11, 12) which filter out incident sunlight. Processing means (15) processes the signal received by the receiver and drives an indicator (18) in the form of a beeper or flashing light which indicates that the golf ball (2) has been sensed by the apparatus.
Owner:TRACK N FIND

Method and system for obtaining an extended-depth-of-field volumetric image using laser scanning imaging

A laser scanning imaging system and method for obtaining an extended-depth-of-field image of a volume of a sample are provided. The system includes a laser module generating an input laser beam, a beam shaping module including an axicon and a Fourier-transform lens, and an imaging module including an objective lens and a detecting assembly. The axicon, Fourier-transform lens and objective lens are formed and disposed to successively convert the input laser beam into an intermediate non-diffracting beam, an intermediate annular beam, and an excitation non-diffracting beam. The excitation beam is projected onto the sample and has a depth of field and transverse resolution together defining a three-dimensional excitation region. The detecting assembly collects electromagnetic radiation from the excitation region to obtain one pixel of the extended-depth-of-field image. The system further includes a two-dimensional scanning module for scanning the excitation beam over the sample and build, pixel-by-pixel, the extended-depth-of-field image.
Owner:UNIV LAVAL

Arrangement for the optical detection of a moving target flow for a pulsed energy beam pumped radiation

The invention is directed to an arrangement for the optical detection of a moving target flow for pulsed energy beam pumped radiation generation based on a plasma. It is the object of the invention to find a novel possibility for detection of a moving target flow for energy beam pumped radiation generation based on a plasma which allows reliable orientation of the excitation beam on the target without the detector being subjected to influence and damage due to radiation emitted by the plasma. According to the invention, this object is met in that a target generator provides a target flow with relatively constant target states in an interaction point, a sensor unit is directed to a detection point which lies close to the interaction point in the direction of the path. The sensor unit contains a projection module which has a defined focal length and numerical aperture, so that only transmission light reflected from the detection point is received by the projection module and is directed via a light waveguide to the detection module which is arranged at a spatial distance, and the sensor unit also contains a detection module.
Owner:USHIO DENKI KK

Measurement of fluorescence using capillary isoelectric focusing

Improved apparatus is disclosed for carrying out axially illuminated laser induced fluorescence whole-column imaging detection in the capillary isoelectric focusing of proteins. The separation capillary was made of low refractive index Teflon conditioned with methylcellulose to reduce electroosmotic flow and a small amount of high refractive index organic solvent (glycerol) was added to the sample mixture. It was found that an axially directed laser excitation beam was propagated essentially with total internal reflection, so that minimum interference arose from stray light or from scattering light originating from the wall of the capillary. With the naturally fluorescent protein R-phycoerythrin, a concentration detection limit LOD 10−11 M or mass LOD 10−17 Mo was obtained.
Owner:PAWLISZYN JANUSZ

Device for measuring thermal diffusivity

InactiveCN101929968AMonitor strength in real timeCorrect response timeMaterial thermal conductivityMaterial heat developmentSample MeasureMeasurement device
The invention provides a device for measuring a thermal diffusivity. The device comprises an excitation light source, an optical control device, a vacuum heating furnace, a temperature controlling device, a temperature measuring device and a data acquiring and processing device, wherein the excitation light source generates excitation light beams; the optical control device is provided with an optical component group, a light beam mass spectrometer and an energy meter and regulates the energy of the excitation light beams through a replaceable optical element in the optical component group; a heating element for heating a sample is arranged in the vacuum heating furnace; the temperature controlling device is used for controlling the heating temperature of the vacuum heating furnace; the temperature measuring device amplifies a temperature rise signal of the sample measured by a detector through a pre-amplifier and transmits the amplified signal to the data acquiring and processing device; the data acquiring and processing device comprises a data acquiring system and a data processing system; the data acquiring system transmits all acquired data signals to the data processing system; and the data processing system analyzes and repeatedly and theoretically corrects the data signals. The device for measuring the thermal diffusivity designed by the invention has the advantages of reducing the measuring repeatability of the thermal diffusivity of a material to be less than 1 percent, lowering uncertainty of measurement, improving the level of thermal diffusivity measurement and laying foundations for the establishment of a standard thermal diffusivity device in China, the preparation of a standard thermal diffusivity substance and the establishment of a standard thermal diffusivity database.
Owner:NAT INST OF METROLOGY CHINA +1

Light source module and projection apparatus

A light source module including a first light-emitting device, a light emitting wheel, a second light-emitting device, and a light combination device is provided. The first light-emitting device provides an exciting beam. The light emitting wheel is disposed on a transmission path of the exciting beam and has a first light conversion area. The exciting beam obliquely irradiates on the first light conversion area and is converted into a first color beam. The second light-emitting device provides a second color beam. Herein, colors of the first color beam and the second color beam are different. The light combination device is disposed on the transmission paths of the first color beam and the second color beam. The first color beam is reflected to the light combination device by the light emitting wheel and the light combination device combines the first color beam and the second color beam.
Owner:YOUNG OPTICS

Portable device for detecting molecule(s)

An optical assembly 140 for a portable device for detecting molecule(s) within reaction vessels 110 comprises a collimator 403, a beam splitter arrangement and a plurality of guide arrangements 143. The collimator 403 collimates an excitation beam from an excitation source 400. The beam splitter arrangement splits the excitation beam from the collimator into a plurality of split excitation beams. Each beam splitter splits an incoming beam into two beams. In the case where the beam splitter arrangement comprises more than one beam splitter, the beam splitters are arranged in tiers such that a first tier comprises one beam splitter for receiving the excitation beam from the collimator, and each of the other tiers comprises one or more beam splitters. Each beam splitter in at least one of the other tiers receives a split excitation beam from a previous tier. Each guide arrangement 140 guides a respective one of the plurality of split excitation beams along an excitation path A from the beam splitter arrangement into a reaction vessel 110 containing a sample to stimulate an emission of a reaction light from the sample. Each guide arrangement 140 further guides reaction light from the sample along a detection path B towards a detector arrangement 142.
Owner:UBIQUITOME LTD

Sample module with sample stream spaced from window, for x-ray analysis system

An x-ray analysis system with an x-ray source for producing an x-ray excitation beam directed toward an x-ray analysis focal area; and a sample chamber for presenting a fluid sample to the x-ray analysis focal area. The x-ray excitation beam is generated by an x-ray engine and passes through an x-ray transparent barrier on a wall of the chamber, to define an analysis focal area within space defined by the chamber. The fluid sample is presented as a stream suspended in the space and streaming through the focal area, using a laminar air flow and / or pressure to define the stream. The chamber's barrier is therefore separated from both the focal area and the sample, resulting in lower corruption of the barrier.
Owner:X-RAY OPTICAL SYSTEM INC

Flow Cytometer Acquisition And Detection System

A flow cytometer has a flow cell through which a sample flows and at least one laser emitting an excitation beam for illuminating a corresponding interrogation region in the flow cell. Scattered and fluorescence light from each interrogation region is collected by one or more input fibers for that region, and the input fiber(s) are fed to a dispersion module for that interrogation region that disperses the incoming light into different spectral regions. The dispersed light is conveyed, such as by a plurality of output fibers, to one or more photosensitive detectors. Thus, time multiplexed light signals may be delivered to a detector whereby several unique light signals can be measured by a single detector.
Owner:ADVANCED CYTOMETRY INSTR SYST

Detection time and position controllable laser induced breakdown spectroscopy detection device

ActiveCN102128815ALetter-to-back ratioGood for qualitative and quantitative detectionAnalysis by material excitationExcitation beamSoil heavy metals
The invention discloses a detection time and position controllable laser induced breakdown spectroscopy (LIBS) detection device, belongs to a technology for detecting metal elements in complex samples, and particularly relates to the technical field of soil heavy metal pollution element detection. The device is characterized in that: a fiber is axially vertical to a laser excitation beam and aligned with a plasma spark center position, the detection position is accurately adjusted through a one-dimensional platform in a range of below 5 millimeters, the device is provided with built-in LIBS acquisition control software for controlling the detection time, and the acquired spectrum has high signal-to-background ratio. The device has high working speed, and is simple in sample treatment, suitable for detecting multiple substances and convenient to carry.
Owner:TSINGHUA UNIV

Differential confocal Raman spectra test method

InactiveCN101290293AImproved microspectral detection capabilitiesImprove detection performanceRaman scatteringLight beamAbsolute measurement
The invention belongs to the micro-spectrum imaging technical field and relates to a differential confocal raman spectral test method. The method integrates the technical characteristics of the differential confocal detection method and the raman spectral detection method, forms a test method capable of realizing sample microarea spectral detection, precisely catches focus positions of excitation light beams through the differential confocal technology, detects raman spectra of corresponding positions, simultaneously adopts a designed pupil filter, sharpens Airy disc major lobes of a differential confocal raman spectral system, improves the microarea raman spectral detectability and precisely acquires microarea space spectrum information which comprises spectral information and position information of microarea samples. The method obviously improves the microarea spectral detectability of a confocal raman spectromicroscope, has absolute tracking zero points and bipolar tracking characteristics, realizes absolute measurement of physical dimension, can be widely applied in the technical fields such as biomedicine, life sciences, biophysics, biochemistry, industrial precision detection and so on to perform high-precision detection of geometric positions and spectral characteristics of microareas, and has very important application prospect.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Turbidity sensor

A small size turbidity sensor for underwater in-situ measurements in the wide range of turbidity values is disclosed that may be integrated into a housing with other underwater sensors. The turbidity sensor incorporates micro focusing devices and light stop that gives no divergence excitation beam with convergence less than 1.5 degrees and the measuring angle between the optical axis of the incident radiation and mat of the diffused radiation 90 ±2.5 degrees. Another embodiment includes internal and external optical calibrators that allows the sensor to work longer without human intervention.
Owner:ECOLAB USA INC

Systems for fluorescence illumination using superimposed polarization states

ActiveUS20120176673A1Different optical propertyPolarising elementsMicroscopesExcitation beamOptical property
Various superimposing beam controls that can superimpose beams of light with different optical properties are described. In one aspect, a beam control receives a beam of light and outputs one or more beams. Each beam is output in a different polarization state and with different optical properties. Superimposing beam controls can be incorporated in fluorescence microscopy instruments to split a beam of excitation light into one or more beams of excitation light. Each beam of excitation light has a different polarization and is output with different optical properties so that each excitation beam can be used to execute a different microscopy technique.
Owner:GLOBAL LIFE SCI SOLUTIONS USA LLC

Method of stabilizing laser beam, and laser beam generation system

A laser beam generation system comprises a solid state laser oscillator excited by an excitation beam, and a Q switch for pulsating laser oscillation by use of a saturable absorber, wherein the optical path length of a laser resonator is variable. The pulse of a laser beam generated from the laser beam generation system is detected, and variation of the optical path length of the laser resonator is controlled based on a characteristic of the detected pulse, to thereby stabilize the laser beam. The laser beam generation system may further comprise resonator length regulation element for varying the optical path length of the laser resonator, and detection element for detecting the pulse laser beam outputted, wherein the optical path length of the laser resonator is regulated by the resonator length regulation element based on a characteristic of the pulse detected by the detection element.
Owner:SONY CORP

System and method for a transparent color image display utilizing fluorescence conversion of nanoparticles and molecules

A system and a method of a transparent color image display utilizing fluorescence conversion (FC) of nano-particles and molecules are disclosed. In one preferred embodiment, a color image display system consists of a light source equipped with two-dimensional optical scanning hardware and a FC display screen board. The FC display screen board consists of a fluorescence display layer, a wavelength filtering coating, and a visibly transparent substrate. In another preferred embodiment, two mechanisms of light excitation are utilized. One of the excitation mechanisms is up-conversion where excitation light wavelength is longer than fluorescence wavelength. The second mechanism is down-conversion where excitation wavelength is shorter than fluorescence wavelength. A host of preferred fluorescence materials for the FC screen are also disclosed. These materials fall into four categories: inorganic nano-meter sized phosphors; organic molecules and dyes; semiconductor based nano particles; and organometallic molecules. These molecules or nano-particles are incorporated in the screen in such a way that allows the visible transparency of the screen. Additionally, a preferred fast light scanning system is disclosed. The preferred scanning system consists of dual-axes acousto-optic light deflector, signal processing and control circuits equipped with a close-loop image feedback to maintain position accuracy and pointing stability of the excitation beam.
Owner:SUPERIMAGING

Flow method and apparatus for screening chemicals using micro x-ray fluorescence

Method and apparatus for screening chemicals using micro x-ray fluorescence. A method for screening a mixture of potential pharmaceutical chemicals for binding to at least one target binder involves flow-separating a solution of chemicals and target binders into separated components, exposing them to an x-ray excitation beam, detecting x-ray fluorescence signals from the components, and determining from the signals whether or not a binding event between a chemical and target binder has occurred.
Owner:ICAGEN LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products