Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

190 results about "Polariton" patented technology

In physics, polaritons /pəˈlærɪtɒnz, poʊ-/ are quasiparticles resulting from strong coupling of electromagnetic waves with an electric or magnetic dipole-carrying excitation. They are an expression of the common quantum phenomenon known as level repulsion, also known as the avoided crossing principle. Polaritons describe the crossing of the dispersion of light with any interacting resonance. To this extent polaritons can also be thought as the new normal modes of a given material or structure arising from the strong coupling of the bare modes, which are the photon and the dipolar oscillation. The polariton is a bosonic quasiparticle, and should not be confused with the polaron (a fermionic one), which is an electron plus an attached phonon cloud.

Terahertz light source chip and manufacturing method thereof, terahertz light source device and manufacturing method thereof, and terahertz light source module and manufacturing method thereof

The invention provides a terahertz light source chip and a manufacturing method thereof, a terahertz light source device and a manufacturing method thereof, and a terahertz light source module and a manufacturing method thereof. The light source chip comprises a two-dimensional electron gas mesa, an electrode, a terahertz resonant cavity and an optical grating, wherein the electrode is formed on the two-dimensional electron gas mesa and used for exciting plasma waves; the terahertz resonant cavity is formed below the two-dimensional electron gas mesa, and a holophote is arranged on the bottom surface of the resonant cavity; the optical grating is formed on the two-dimensional electron gas mesa and used for coupling a plasma wave mode to a terahertz resonant cavity mode so that terahertz wave emission can be generated. Plasma polaritons are formed by strongly coupling the terahertz resonant cavity mode to the plasma wave mode in two-dimensional electron gas under the optical grating, terahertz wave emission can be generated through electric excitation of the plasma polaritons, the problem that terahertz emission is low in frequency or working temperature because of high frequency oscillation relaying on a single electron or quantum jump relaying on a single electron is solved, and the emission frequency range and the working temperature range are widened.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI

Dual-frequency terahertz band-pass filter

The invention relates to a dual-frequency terahertz band-pass filter, in particular to the design and production of the dual-frequency terahertz band-pass filter with a semi-insulating gallium arsenide based hollow surface and a complementary split ring resonator, and relates to the terahertz technology and the technical field of semiconductor micromachining. The dual-frequency terahertz band-pass filter utilizing the working principle of the complementary split ring resonator achieves surface plasma polariton resonance through the adjustment on the inner diameter, outer diameter, opening width and periodic structure of the C-SRR (split ring resonator) and obtains low-frequency and high-frequency resonance in two abnormal transmission enhancement modes of inductance-capacitance (LC) resonance. The energy conversion between two resonance frequencies is achieved through the electromagnetic interaction of the two resonances, so that the terahertz reaching the same transmission strength at two bands can be output. The dual-frequency terahertz band-pass filter takes advantage of an existing semiconductor micromachining process and is simple in production process, easy to operate and capable of accurately controlling a micro-structure machining area of the complementary split ring resonator and greatly reducing production costs.
Owner:SHANGHAI NORMAL UNIVERSITY

Submicron surface plasmon polariton beam splitter based on composite cavity structure

The invention discloses a submicron surface plasmon polariton beam splitter based on a composite cavity structure. The surface plasmon polariton beam splitter comprises a metal thin film. A nanometer suture which can penetrate through an upper surface and a lower surface of the metal thin film are arranged on the metal thin film. A nanometer groove is formed on one side of the nanometer suture to form an asymmetric nanometer monolete suture. A metal-medium-metal metal injection molding (MIM) vertical cavity is integrated below the nanometer groove. On an operating wavelength of the beam splitter, a function point (FP) resonant cavity and the MIM vertical cavity are used for nearly manipulating surface plasmon polaritons (SPPs) independently, wherein the FP resonant cavity is formed in the upper half portion of the asymmetric nanometer monolete suture and the MIM vertical cavity is integrated in the FP resonant cavity. Therefore, the submicron surface plasmon polariton beam splitter based on the composite cavity structure has the advantages that SPPs beam splitting can be achieved. The greater advantage is that beam splitting wavelength can be allowed and convenient to adjust. Meanwhile, transverse size can not be increased, and the integrated height can be increased. In a high integration density plasmon polariton return circuit, the submicron surface plasmon polariton beam splitter based on the composite cavity structure has a potential application. The submicron surface plasmon polariton beam splitter based on the composite cavity structure is simple in structure, good in beam splitting performance, high in extinction ratio and capable of providing a design thought for other surface plasmon polariton function components.
Owner:PEKING UNIV

Near infrared photoelectric detector with enhancement based on utilization of indium tin oxide nanoparticles

The invention, which belongs to the infrared detector field, particularly relates to a near infrared photoelectric detector with enhancement based on utilization of indium tin oxide nanoparticles. The near infrared photoelectric detector successively comprises transparent glass (1) with high infrared transmissivity, a transparent electrode (2), a photoelectric conversion material (3), indium tin oxide nanoparticles (4), and a back electrode (5) from top to bottom. After incident infrared radiation passes through the transparent glass (1), the transparent electrode (2), and the photoelectric conversion material (3), a portion of the infrared radiation is localized at the surfaces of the indium tin oxide nanoparticles (4), scattering is generated and a surface plasma polariton transmission mode is formed, so that an effective transmission distance of the incident electromagnetic wave in the photoelectric conversion material (3) can be increased. According to the invention, the near infrared photoelectric detector with enhancement based on utilization of indium tin oxide nanoparticles has advantages of diversity of a preparation technology, low manufacturing cost, adjustable enhancement resonant position and high sensitivity and the like.
Owner:SOUTHEAST UNIV

Super-diffraction nano-optical probe

The invention relates to a super-diffraction nano-optical probe. Specifically, a metal outer cladding is plated on the outer surface of conical medium core, and a multilayer film is deposited on the surface of a conical needle tip. The multilayer film is composed of dielectric films and metal film layers that are arranged alternately. Vertically incident light on the surfaces of the dielectric films can excite surface plasmon polaritons on interfaces of the metal films and the dielectric films. When the urface plasmon polaritons spread to the conical needle tip along the interfaces, a local enhancement effect can be achieved, and further, modification, compression and transmission enhancement on local enhanced light spots can be carried out through optical anisotropy of the multilayer film on the surface of the conical needle tip. According to the same principle, the invention also includes a design of a bow-tie structure with the multilayer film material deposited on its surface. The bow-tie structure is characterized in that the multilayer film material is deposited on its lower surface. According to the invention, the transmitted light intensity can also be changed by adjusting the thickness ratio of metal media in the multilayer film. Also, the probe has a simple structure, and can be applied to lithography very conveniently to improve lithographic resolution.
Owner:INST OF OPTICS & ELECTRONICS - CHINESE ACAD OF SCI

Intermediate infrared graphene plasmon polariton biochemical sensor

The invention discloses an intermediate infrared graphene plasmon polariton biochemical sensor. The intermediate infrared graphene plasmon polariton biochemical sensor comprises an intermediate infrared broad band optical source, a first intermediate infrared lens, a graphene plasmon polariton sensing unit and a second intermediate infrared lens; the graphene plasmon polariton sensing unit comprises a doped silicon substrate, a first grating coupling area, a second grating coupling area, a sensing area, and a graphene layer, wherein the graphene layer covers the first grating coupling area, the second grating coupling area and the sensing area; an intermediate infrared light wave emitted by the broad band optical source is focused in the first grating coupling area through the first intermediate infrared lens so as to be coupled with a graphene plasmon polariton, the produced intermediate infrared graphene plasmon polariton reaches the sensing area through the graphene layer, repeatedly reacts with a biological sample in the sensing area, reaches the second grating coupling area through the graphene layer, is scattered to the far field, and is focused to a fourier infrared spectrometer through the second intermediate infrared lens to implement spectral measurement and analysis. The intermediate infrared graphene plasmon polariton repeatedly reacts with the biological sample in the sensing area, and the detection sensitivity of biomolecules is improved.
Owner:WUHAN POST & TELECOMM RES INST CO LTD

Symmetrical periodic groove leaky-wave antenna based on artificial surface plasmon polaritons

The invention relates to a symmetrical periodic groove leaky-wave antenna based on artificial surface plasmon polaritons, and relates to a leaky-wave antenna. A dielectric substrate is arranged; a metal structure covers the upper surface of the dielectric substrate; the metal structure comprises a trapezoidal coplanar waveguide transmission line feeding part, an artificial surface plasmon polariton gradual-change metal groove array part, a transition part and an artificial surface plasmon polariton periodic metal groove part; the trapezoidal coplanar waveguide transmission line feeding part ispositioned at one end of the dielectric substrate; the artificial surface plasmon polariton gradual-change metal groove array part is positioned in the middle of the dielectric substrate; the transition part is from the trapezoidal coplanar waveguide transmission line feeding part to the artificial surface plasmon polariton gradual-change metal groove array part; and the artificial surface plasmon polariton gradual-change metal groove array part is positioned at the tail end of the dielectric substrate. The working frequency band of the antenna is very wide; the corresponding working frequency band has relatively high gain and good directivity; and the symmetrical periodic groove leaky-wave antenna disclosed by the invention is simple in structure, simple and easy to manufacture, relatively small in size and good in performance, can be applied to actual working requirements, and has very important practical significance for application of the artificial surface plasmon polaritons in amicrowave frequency band.
Owner:XIAMEN UNIV

Terahertz source chip, source device and source assembly, and manufacturing methods thereof

The present invention provides a terahertz source chip, a source device, a source assembly and manufacturing methods thereof. The source chip comprises: a two-dimensional electron gas mesa; an electrode formed on the two-dimensional electron gas mesa for exciting a plasma wave; a terahertz resonant cavity formed below the two-dimensional electron gas mesa, the terahertz resonant cavity having a total reflector on a bottom surface thereof; and a grating formed on the two-dimensional electron gas mesa for coupling a plasma wave pattern with a cavity mode of the terahertz resonant cavity to generate terahertz radiation. In the present invention, a plasmon polariton is formed by strongly coupling the cavity mode of the terahertz resonant cavity with the plasma wave mode in the two-dimensional electron gas below the grating, and the terahertz wave emission is realized by electrical excitation of the plasmon polariton. In this way, a problem of low frequency or low operating temperature caused by generating the terahertz emission based on high-frequency oscillation of a single electron or quantum transition of a single electron is avoided, and the emission frequency band and the operating temperature range are widened.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products