Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1738 results about "Coplanar waveguide" patented technology

Coplanar waveguide is a type of electrical planar transmission line which can be fabricated using printed circuit board technology, and is used to convey microwave-frequency signals. On a smaller scale, coplanar waveguide transmission lines are also built into monolithic microwave integrated circuits. Conventional coplanar waveguide (CPW) consists of a single conducting track printed onto a dielectric substrate, together with a pair of return conductors, one to either side of the track. All three conductors are on the same side of the substrate, and hence are coplanar. The return conductors are separated from the central track by a small gap, which has an unvarying width along the length of the line. Away from the central conductor, the return conductors usually extend to an indefinite but large distance, so that each is notionally a semi-infinite plane.

Tunable microwave devices with auto-adjusting matching circuit

An impedance matching circuit includes a conductor line having an input port and an output port, a ground conductor, a tunable dielectric material positioned between a first section of the conductor line and the ground conductor, a non-tunable dielectric material positioned between a second section of the conductor line and the ground conductor, and means for applying a DC voltage between the conductor line and the ground conductor. The impedance matching circuit may alternatively include a first planar ground conductor, a second planar ground conductor, a strip conductor having an input port and an output port, and positioned between the first and second planar ground conductors to define first and second gaps, the first gap being positioned between the strip conductor and the first planar ground conductor and the second gap being positioned between the strip conductor and the second planar ground conductor. A non-tunable dielectric material supports the first and second planar ground conductors and the strip conductor in the same plane. A connection is provided for applying a DC voltage between the strip conductor and the first and second planar ground conductors. A plurality of tunable dielectric layer sections are positioned between the strip conductor and the first and second planar ground conductors so as to bridge the gaps between the said first and second planar ground conductors and the strip conductor at a plurality of locations, leaving non-bridged sections in between, defining a plurality of alternating bridged and non-bridged co-planar waveguide sections.
Owner:NXP USA INC

Microelectronic mechanical dual channel microwave power detection system and preparation method thereof

The invention discloses a dual channel microwave power detection system based on a microelectronic mechanical microwave power sensor and a preparation method thereof. The system has the advantages of simple structure, large measurement range and no direct current power consumption. The system is based on a gallium arsenide substrate. A coplanar waveguide transmission line (A), a thermoelectric MEMS microwave power sensor (B) and an MEMS clamped beam capacitor type microwave power sensor (C) are designed on the substrate. When the power of a microwave signal is small, the thermoelectric MEMS microwave power sensor carries out detection according to the one-to-one corresponding relationship between the thermopile output voltage and the microwave power. When the power of the microwave signal is large, the MEMS clamped beam capacitor type microwave power sensor carries out detection. A square mass block is designed on an MEMS clamped beam above the coplanar waveguide transmission line. The area with the coplanar waveguide transmission line is increased, and at the same time the weight of the center position of the MEMS clamped beam is increased. Static power is more likely to cause large deformation of the MEMS clamped beam, and the system sensitivity is improved.
Owner:NANJING UNIV OF POSTS & TELECOMM
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products