Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5762results about "Pyrometry using electric radation detectors" patented technology

Apparatus and method for measuring biologic parameters

Support structures for positioning sensors on a physiologic tunnel for measuring physical, chemical and biological parameters of the body and to produce an action according to the measured value of the parameters. The support structure includes a sensor fitted on the support structures using a special geometry for acquiring continuous and undisturbed data on the physiology of the body. Signals are transmitted to a remote station by wireless transmission such as by electromagnetic waves, radio waves, infrared, sound and the like or by being reported locally by audio or visual transmission. The physical and chemical parameters include brain function, metabolic function, hydrodynamic function, hydration status, levels of chemical compounds in the blood, and the like. The support structure includes patches, clips, eyeglasses, head mounted gear and the like, containing passive or active sensors positioned at the end of the tunnel with sensing systems positioned on and accessing a physiologic tunnel.
Owner:BRAIN TUNNELGENIX TECH CORP

Ear-type clinical thermometer

A probe of an ear-type clinical thermometer 20 comprises a first heat insulation member 210 made of a resin material and a second high heat insulation member 220 made of a resin material that is connected to a distal end of the first heat insulation member 210 by conventional coupling means. The second high heat insulation member 220 is tapered forwardly and is provided on the distal end with a concave surface 221. A protection cover 230 sheathes the first heat insulation member 210 and second high heat insulation member 220. A thermistor fine lead wire 240 is embedded in the first heat insulation member 210 and second high heat insulation member 220 so that a turning end portion 241 of the wire 240 is bridged over the concave surface 221 of the second high heat insulation member 220 to be exposed above the concave surface 221. An ultrafast responsivity thermistor 250 is mounted substantially on a center of the turning end portion 241 of the thermistor fine lead wire 240.
Owner:BIO ECHO NET

Manganese doped upconversion luminescence nanoparticles

The present relates in general to upconversion luminescence (“UCL”) materials and methods of making and using same and more particularly, but not meant to be limiting, to Mn2+ doped semiconductor nanoparticles for use as UCL materials. The present invention also relates in general to upconversion luminescence including two-photon absorption upconversion, and potential applications using UCL materials, including light emitting diodes, upconversion lasers, infrared detectors, chemical sensors, temperature sensors and biological labels, all of which incorporate a UCL material.
Owner:FLIR DETECTION

Backside imaging through a doped layer

Backthinning in an area selective manner is applied to CMOS imaging sensors 12 for use in electron bombarded active pixel array devices. A further arrangement results in an array of collimators 51 aligned with pixels 42 or groups of pixels of an active pixel array providing improved image contrast of such image sensor. Provision of a thin P-doped layer 52 on the illuminated rear surface provides both a diffusion barrier resulting in improved resolution and a functional shield for reference pixels. A gradient in concentration of P-doped layer 52 optimizes electron collection at the pixel array.
Owner:EOTECH LLC

Apparatus and method for measuring biologic parameters

Support structures for positioning sensors on a physiologic tunnel for measuring physical, chemical and biological parameters of the body and to produce an action according to the measured value of the parameters. A sensor fitted on the support structures uses a special geometry for acquiring continuous and undisturbed data on the physiology of the body. Signals are transmitted to a remote station by wireless transmission such as by electromagnetic waves, radio waves, infrared, sound and the like or by being reported locally by audio or visual transmission. The physical and chemical parameters include brain function, metabolic function, hydrodynamic function, hydration status, levels of chemical compounds in the blood, and the like. The support structure includes patches, clips, eyeglasses, head mounted gear and the like, containing passive or active sensors positioned at the end of the tunnel with sensing systems positioned on and accessing a physiologic tunnel.
Owner:BRAIN TUNNELGENIX TECH CORP

Blood sugar level measuring apparatus

Blood sugar levels are measured non-invasively based on temperature measurement. Non-invasively measured blood sugar level values obtained by a temperature measurement scheme are corrected by blood oxygen saturation and blood flow volume, thereby stabilizing the measurement data.
Owner:HITACHI LTD

Carbon nanotube based detector

Systems and methods for designing and fabricating carbon nanotube based detectors are disclosed. In some embodiments, one or more sensor elements can be formed from a film of single-walled carbon nanotubes (SWNTs). Bolometric properties of such detectors are disclosed. In some embodiments, the film can be thermally isolated in various ways, such as suspending the film and providing a vacuum environment, to provide the bolometric properties. Various properties of the SWNT films, such as resistivity-dependence on temperature and spectral response, can be obtained by adjusting the dimension and / or composition of the film. Examples of SWNT film formation, detector element fabrication, and array fabrication are disclosed.
Owner:RGT UNIV OF CALIFORNIA

Method of fabrication of an infrared radiation detector and infrared detector device

A method of fabricating an infrared detector, a method of controlling the stress in a polycrystalline SiGE layer and an infrared detector device is disclosed. The method of fabricating includes the steps of forming a sacrificial layer on a substrate; patterning said sacrificial layer; establishing a layer consisting essentially of polycrystalline SiGe on said sacrificial layer; depositing an infrared absorber on said polycrystalline SiGe layer; and thereafter removing the sacrificial layer. The method of controlling the stress in a polycrystalline SiGe layer deposited on a substrate is based on varying the deposition pressure. The infrared detector device comprises an active area and an infrared absorber, wherein the active area comprises a polycrystalline SiGe layer, and is suspended above a substrate.
Owner:INTERUNIVERSITAIR MICRO ELECTRONICS CENT (IMEC VZW)

Display device and method for driving display device

A display device includes a pixel which includes a first photosensor portion having a first photodiode for detecting visible light, which is provided together with a display element portion; and a pixel which includes a second photosensor portion having a second photodiode for detecting infrared rays, which is provided together with another display element portion. The second photosensor portion detects infrared rays included in external light, and selects an imaging element and adjusts sensitivity in accordance with the amount of infrared rays detected by the second photosensor portion.
Owner:SEMICON ENERGY LAB CO LTD

System, method and computer-accessible medium for depth of field imaging for three-dimensional sensing utilizing a spatial light modulator microscope arrangement

ActiveUS20150369660A1Efficiently modulate the intensity, phase, and/or polarization of incident radiationSolid-state devicesRadiating elements structural formsElectrical conductorPlanar antennas
Exemplary embodiment can utilize the properties of tunable thin-film, material (e.g., graphene) to efficiently modulate the intensity, phase, and / or polarization of transmitted and / or reflected radiation, including mid-infrared (“mid-IR”) radiation. Exemplary embodiments include planar antennas comprising tunable thin-film material sections and metallic sections disposed in contact with the tunable thin-film material sections, each metallic section having a gap with at least one dimension related to a wavelength of the radiation, which in some embodiments may be less than the wavelength. The metallic layer may comprise rods arrange in one or more shapes, or one or more apertures of one or more shapes. Embodiments of the antenna may also comprise a substrate, which may be a semiconductor or conductor in various embodiments. Embodiments also include systems, computer-implemented methods, devices, and computer-readable media for effectuating desired modulation of incident radiation by, e.g., varying the doping level of the tunable thin-film material.
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK

Visible/near infrared image sensor

A MOS or CMOS sensor for high performance imaging in broad spectral ranges including portions of the infrared spectral band. These broad spectral ranges may also include portions or all of the visible spectrum, therefore the sensor has both daylight and night vision capabilities. The sensor includes a continuous multi-layer photodiode structure on a many pixel MOS or CMOS readout array where the photodiode structure is chosen to include responses in the near infrared spectral ranges. A preferred embodiment incorporates a microcrystalline copper indium diselenide / cadmium sulfide photodiode structure on a CMOS readout array. An alternate preferred embodiment incorporates a microcrystalline silicon germanium photodiode structure on a CMOS readout array. Each of these embodiments provides night vision with image performance that greatly surpasses the GEN III night vision technology in terms of enhanced sensitivity, pixel size and pixel count. Further advantages of the invention include low electrical bias voltages, low power consumption, compact packaging, and radiation hardness. In special preferred embodiments CMOS stitching technology is used to provide multi-million pixel focal plane array sensors. One embodiments of the invention made without stitching is a two-million pixel sensor. Other preferred embodiments available using stitching techniques include sensors with 250 million (or more) pixels fabricated on a single wafer. A particular application of these very high pixel count sensors is as a focal plane array for a rapid beam steering telescope in a low earth orbit satellite useful for tracking over a 1500-meter wide track with a resolution of 0.3 meter.
Owner:C PHOCUS

Backside illuminated imaging sensor with improved infrared sensitivity

A backside illuminated imaging sensor includes a semiconductor layer and an infrared detecting layer. The semiconductor layer has a front surface and a back surface. An imaging pixel includes a photodiode region formed within the semiconductor layer. The infrared detecting layer is disposed above the front surface of the semiconductor layer to receive infrared light that propagates through the imaging sensor from the back surface of the semiconductor layer.
Owner:OMNIVISION TECH INC

Architecture and method of coupling electromagnetic energy to thermal detectors

A radiation sensor. The inventive sensor has a two-level detector structure formed on a substrate in which a thermal detector element is suspended over the substrate as a microbridge structure. A receiver of electromagnetic radiation is provided on the same side of the substrate in a manner that efficiently couples the radiation field to the thermal detector element. The thermal detector element has a sandwich structure including a heater metal layer, a dielectric layer, and a thin film thermo-resistive material. The thermal detector element is suspended out of physical contact with the receiver. In one embodiment, the receiver is an antenna having a crossed bowtie configuration that efficiently couples the radiation field to the detector element. The inventive radiation sensors are especially useful for mm-wave and microwave sensing applications. The sensor can be used individually or in linear or two-dimensional arrays thereof. The invention also is directed to a method of fabricating such a radiation sensor.
Owner:HRL LAB +1

Electromagnetic and Thermal Sensors Using Carbon Nanotubes and Methods of Making Same

Electromagnetic radiation detecting and sensing systems using carbon nanotube fabrics and methods of making the same are provided. In certain embodiments of the invention, an electromagnetic radiation detector includes a substrate, a nanotube fabric disposed on the substrate, the nanotube fabric comprising a non-woven network of nanotubes, and first and second conductive terminals, each in electrical communication with the nanotube fabric, the first and second conductive terminals disposed in space relation to one another. Nanotube fabrics may be tuned to be sensitive to a predetermined range of electromagnetic radiation such that exposure to the electromagnetic radiation induces a change in impedance between the first and second conductive terminals. The detectors include microbolometers, themistors and resistive thermal sensors, each constructed with nanotube fabric. Nanotube fabric detector arrays may be formed for broad-range electromagnetic radiation detecting. Methods for making nanotube fabric detectors, arrays, microbolometers, thermistors and resistive thermal sensors are each described.
Owner:NANTERO

Imager integrated circuit and stereoscopic image capture device

An imager integrated circuit intended to cooperate with an optical system configured to direct light rays from a scene to an inlet face of the circuit, the circuit being configured to perform a simultaneous stereoscopic capture of N images corresponding to N distinct views of the scene, each of the N images corresponding to light rays directed by a portion of the optical system which is different from those directing the rays corresponding to the N-1 other images, including:N subsets of pixels made on a same substrate, each of the N subsets of pixels being intended to perform the capture of one of the N associated images,means interposed between each of the N subsets of pixels and the inlet face of the circuit, and configured to pass the rays corresponding to the image associated with said subset of pixels and block the other rays.
Owner:COMMISSARIAT A LENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

Upconversion luminescence materials and methods of making and using same

The present relates in general to upconversion luminescence ("UCL") materials and methods of making and using same and more particularly, but not meant to be limiting, to Mn2+ doped semiconductor nanoparticles for use as UCL materials. The present invention also relates in general to upconversion luminescence including two-photon absorption upconversion, and potential applications using UCL materials, including light emitting diodes, upconversion lasers, infrared detectors, chemical sensors, temperature sensors and biological labels, all of which incorporate a UCL material.
Owner:FLIR DETECTION

Microbolometer infrared sensors

A microbolometer infrared sensor utilizes a porous silicon bridge as its thermal isolating and mechanical supporting structure. Porous silicon formed from single crystal silicon on lightly doped p-type silicon has a thermal conductivity lower than silicon dioxide and silicon nitride, and, therefore, when used as a mechanical supporting structure, can offer better thermal isolation performance. The porous silicon layer can be fabricated much thicker than silicon dioxide and silicon nitride membranes since there is almost no residual stress therein. A thicker porous silicon bridge has higher mechanical support strength. The porous silicon process is a low temperature process. It facilitates a fabrication strategy of microelectronics first and micromechanics last.
Owner:TU XIANG ZHENG

Imaging device with multiple fields of view incorporating memory-based temperature compensation of an uncooled focal plane array

A plurality of temperature dependent focal plane arrays operate without a temperature stabilization cooler and / or heater over a wide range of ambient temperatures. Gain, offset and / or bias correction tables are provided in a flash memory in memory pages indexed by the measured temperature of the focal plane arrays. The memory stores a calibration database, which is accessed using a logic circuit which generates a memory page address from a digitized temperature measurement of each of the focal plane array. The calibration database is comprised of an array of bias, gain and offset values for each pixel in the focal plane array for each potential operating temperature over the entire range of potential operating temperatures. The bias, gain and offset data within the database are read out, converted to analog form, and used by analog circuits to correct the focal plane array response. The output of each of the FPAs is multiplexed to a shared processing module and calibration data for each of the FPAs is accessed from the shared processing module.
Owner:APROLASE DEV

Infrared detector with micro-bridge structure and manufacturing method thereof

The invention relates to an infrared detector with a micro-bridge structure, which belongs to the technical field of micro-electromechanics, and comprises a silicon substrate as a read-out circuit of the infrared detector; a metal reflecting layer deposited on the silicon substrate; a dielectric layer which is deposited in a groove of the metal reflecting layer and has the height being consistentwith that of the metal reflecting layer; a sacrifice layer and a first release protection layer used as protection of release of the sacrifice layer which are deposited on the dielectric layer and the metal reflecting layer and form through holes by lithography and etching; a copper or tungsten pier which is deposited in the through hole of the sacrifice layer; a metal electrode deposited on the copper or tungsten pier and the first release protection layer; and a sensitive material detecting layer which is deposited on the metal electrode and the first release protection layer. A Cu-column micro-bridge structure is manufactured by using the damascene process, and a flat micro-bridge plane is manufactured by introducing the chemical mechanical polishing process (CMP), thereby being conductive to the follow-up process and improving the performances.
Owner:ZHEJIANG DALI TECH +1

Spectrometry system with diffuser

A spectrometer comprises a plurality of isolated optical channels comprising a plurality of isolated optical paths. The isolated optical paths decrease cross-talk among the optical paths and allow the spectrometer to have a decreased length with increased resolution. In many embodiments, the isolated optical paths comprise isolated parallel optical paths that allow the length of the device to be decreased substantially. In many embodiments, each isolated optical path extends from a filter of a filter array, through a lens of a lens array, through a channel of a support array, to a region of a sensor array. Each region of the sensor array comprises a plurality of sensor elements in which a location of the sensor element corresponds to the wavelength of light received based on an angle of light received at the location, the focal length of the lens and the central wavelength of the filter.
Owner:VERIFOOD

Method and apparatus for detecting the presence of an object

A method and apparatus for detecting and classifying an object, including a human intruder. The apparatus includes one or more passive thermal radiation sensors that generate a plurality of signals responsive to thermal radiation. A calculation circuit compares the plurality of signals to a threshold condition and outputs an alarm signal when the threshold condition is met, indicating the presence of the object. The method includes detecting thermal radiation from an object at a first and second wavelength and generating a first and second responsive signal. The signals are compared to a threshold condition that indicates whether the object is an intruder.
Owner:HANGER SOLUTIONS LLC

Vehicle yaw rate correction

A control system or method for a vehicle references a camera and sensors to determine when an offset of a yaw rate sensor may be updated. The sensors may include a longitudinal accelerometer, a transmission sensor, a vehicle speed sensor, and a steering angle sensor. The offset of the yaw rate sensor may be updated when the vehicle is determined to be stationary by referencing at least a derivative of an acceleration from the longitudinal accelerometer. The offset of the yaw rate sensor may be updated when the vehicle is determined to be moving straight by referencing at least image data captured by the camera. Lane delimiters may be detected in the captured image data and evaluated to determine a level of confidence in the straight movement. When the offset of the yaw rate sensor is to be updated, a ratio of new offset to old offset may be used.
Owner:MAGNA ELECTRONICS

Portable physiology monitor

Wearable devices capable of measuring a core body temperature and other vital signs of a user in a range of situations are described herein. The wearable device is arranged to be retained within the ear canal of the ear, in order to prevent the wearable device from inadvertently removing itself from the ear. Providing an infrared thermopile at the innermost end of the ear insert ensures that the infrared thermopile is provided as close as possible to the tympanic membrane which will be used to provide an indication of the core body temperature.
Owner:INOVA DESIGN SOLUTIONS

Photosensitive imaging devices and associated methods

A monolithic sensor for detecting infrared and visible light according to an example includes a semiconductor substrate and a semiconductor layer coupled to the semiconductor substrate. The semiconductor layer includes a device surface opposite the semiconductor substrate. A visible light photodiode is formed at the device surface. An infrared photodiode is also formed at the device surface and in proximity to the visible light photodiode. A textured region is coupled to the infrared photodiode and positioned to interact with electromagnetic radiation.
Owner:SIONYX

Thermal image device and shooting method for thermal image

The invention discloses a thermal image device and a shooting method for the thermal image, and relates to the thermal image device and the field of application of infrared thermal imaging detection. According to the thermal device in the prior art, the shooting part, angle and distance of an object to be shot are selected according to subjective experience of a user during shooting; and the thermal device in the prior art is low in shooting speed, key shooting parts are missed, and the positions, sizes and angles of thermal images of similar objects which are to be shot and shot each time in infrared thermal images are almost different, so the effect of state estimation of the thermal image is influenced. According to the thermal image device and the shooting method, a specified position and size are displayed in the infrared thermal image, and the reference image of the predetermined morphological characteristics of the object to be shot is showed, expected thermal image quality of the object to be shot and the visual reference required by the shooting are provided for the user, the user is assisted in correctly grasping the imaging state and the shooting distance of the thermal image of the object to be shot, the technical requirement on the user is reduced, shooting speed is improved, and the estimation quality of the thermal image is improved.
Owner:MISSION INFRARED ELECTRO OPTICS TECH

Detection system and method using thermal image analysis

Thermal image data of at least a region of a face of a person is provided. The thermal image data is used to determine a physiological state of a person, e.g., anxiety. For example, anxiety may be determined by a comparison of the thermal image data to a baseline, or by comparison of thermal image data for one region of the person's face to another.
Owner:HONEYWELL INT INC +1

Infrared radiation sources, sensors and source combinations, and methods of manufacture

A blackbody radiation device (110) includes a planar filament emission element (102) and a planar detector (104) for respectively producing and detecting radiation having width dl / 1 less than about 0.1 to test a sample gas, where 1 is the wavelength of the radiation; a reflector (108); a window (W); an electrical control (118); and a data output element (116).
Owner:FLIR SURVEILLANCE

Methods and systems for determining temperature of an object

Methods and systems for detecting a temperature TO of a remote object are provided. The method includes storing in memory, a lookup table relating an output voltage of an infrared sensor to a temperature sensed by the infrared sensor V(TO, TA), determining a temperature sensor voltage output corresponding to a temperature TA proximate the infrared sensor, determining a first voltage as a function of the temperature TA proximate the infrared sensor and a reference temperature TREF, V(TA,TREF), determining a second voltage as a function of the temperature of the object TO and the reference temperature TREF, V(TO,TREF) by combining the determined temperature sensor voltage output and the first voltage, and determining a temperature of the object TO from the lookup table using the second voltage.
Owner:AMPHENOL THERMOMETRICS

Calculation device, movement detection device, and electronic instrument

The calculation device (36) according to the present invention receives a plurality of reflected light intensity information for indicating the intensity of each reflected light which reaches a single light receiver via a reflecting object, the reflected light having been emitted in sequence from a plurality of light emitters (31 through 33) provided in mutually different positions, computes a phase difference of an intensity variation which occurs among the reflected light, and determines a movement of the reflecting object on the basis of the calculation result.
Owner:ROHM CO LTD

Infrared detector elements and methods of forming same

Infrared detector elements and methods for forming infrared detector elements in which the top metal layer of CMOS circuitry of the detector element is employed as a lead metal reflector for the infrared detector.
Owner:DRS NETWORK & IMAGING SYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products