Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1911 results about "Biological product" patented technology

Medicinal preparations made from living organisms or their products; venoms, enzymes may be indexed with this term; typically antibiotics and chemically pure biochemicals should not be indexed with this term, also narrower terms animal extract, plant extract, immunological substance or tissue/cell preparation should be considered.

Defined media for pluripotent stem cell culture

Stem cells, including mammalian, and particularly primate primordial stem cells (pPSCs) such as human embryonic stem cells (hESCs), hold great promise for restoring cell, tissue, and organ function. However, cultivation of stem cells, particularly undifferentiated hESCs, in serum-free, feeder-free, and conditioned-medium-free conditions remains crucial for large-scale, uniform production of pluripotent cells for cell-based therapies, as well as for controlling conditions for efficiently directing their lineage-specific differentiation. This instant invention is based on the discovery of the formulation of minimal essential components necessary for maintaining the long-term growth of pPSCs, particularly undifferentiated hESCs. Basic fibroblast growth factor (bFGF), insulin, ascorbic acid, and laminin were identified to be both sufficient and necessary for maintaining hESCs in a healthy self-renewing undifferentiated state capable of both prolonged propagation and then directed differentiation. Having discerned these minimal molecular requirements, conditions that would permit the substitution of poorly-characterized and unspecified biological additives and substrates were derived and optimized with entirely defined constituents, providing a “biologics”-free (i.e., animal-, feeder-, serum-, and conditioned-medium-free) system for the efficient long-term cultivation of pPSCs, particularly pluripotent hESCs. Such culture systems allow the derivation and large-scale production of stem cells such as pPSCs, particularly pluripotent hESCs, in optimal yet well-defined biologics-free culture conditions from which they can be efficiently directed towards a lineage-specific differentiated fate in vitro, and thus are important, for instance, in connection with clinical applications based on stem cell therapy and in drug discovery processes.
Owner:THE BURNHAM INST

Carbon nano-dot, and preparation method and application thereof

ActiveCN102849722AOvercome costsOvercoming the problem of easy fluorescence quenching in the aggregated stateNanotechnologyNano-carbonBiological imagingOrganic compound
The invention discloses a carbon nano-dot, and a preparation method and an application thereof, and solves a problem that the application of present nano-dots is restricted because of high preparation cost and easy fluorescent quenching appearance of an aggregate state. According to the invention, the carbon nano-dot having a high fluorescence quantum efficiency is prepared through adopting a polycarboxyl or polyhydroxy contained organic compound, or an amino acid as a raw material, and urea as a surface passivation modification agent, and through a microwave process, and a carbon nano-dot fluorescent ink is prepared through using the carbon nano-dot. The preparation method disclosed in the invention has the advantages of simplicity, low cost and convenient large-scale production; the fluorescent quenching of the prepared carbon nano-dot on the surface of a biological product does not appear, and the highest fluorescence quantum efficiency is 42%; and the prepared carbon nano-dot fluorescent ink is nontoxic, does not generate a precipitate after long-time dispose, and can be applied to the biological imaging field, the biological product identification field, the information storage field, the information encryption field, the false proof field, the illumination display field, the photovoltaic device field and the like.
Owner:CHANGCHUN INST OF OPTICS FINE MECHANICS & PHYSICS CHINESE ACAD OF SCI

Implantable biocompatible immunoisolatory vehicle for delivery of selected therapeutic products

An immunoisolatory vehicle for the implantation into an individual of cells which produce a needed product or provide a needed metabolic function. The vehicle is comprised of a core region containing isolated cells and materials sufficient to maintain the cells, and a permselective, biocompatible, peripheral region free of the isolated cells, which immunoisolates the core yet provides for the delivery of the secreted product or metabolic function to the individual. The vehicle is particularly well-suited to delivery of insulin from immunoisolated islets of Langerhans, and can also be used advantageously for delivery of high molecular weight products, such as products larger than IgG. A method of making a biocompatible, immunoisolatory implantable vehicle, consisting in a first embodiment of a coextrusion process, and in a second embodiment of a stepwise process. A method for isolating cells within a biocompatible, immunoisolatory implantable vehicle, which protects the isolated cells from attack by the immune system of an individual in whom the vehicle is implanted. A method of providing a needed biological product or metabolic function to an individual, comprising implanting into the individual an immunoisolatory vehicle containing isolated cells which produce the product or provide the metabolic function.
Owner:BROWN UNIV RES FOUND INC

Nitrogen-doped carbon nanometer particle as well as preparation method and application thereof

InactiveCN103113886AOvercoming the technical problem of easy fluorescence quenchingEasy to prepareNon-macromolecular adhesive additivesInksMicrowave methodSolvent
The invention discloses a nitrogen-doped carbon nanometer particle as well as a preparation method and application thereof, belongs to the field of nanometer material science and is used for solving the technical problems that fluorescence quenching is easily caused to the aggregative state of the carbon nanometer particle due to surface passivation modifier which is added for the preparation of existing carbon nanometer particles. The nitrogen-doped carbon nanometer particle is prepared through a microwave method by using organic compounds containing polycarboxyl or polyhydroxy as materials and using ammonia water as a solvent and a nitrogen doping source. The invention further provides the application of the nitrogen-doped carbon nanometer particle as fluorescent ink and fluorescent glue. The preparation method disclosed by the invention is simple, low in cost, and convenient to realize large-scale production; the maximal fluorescent quantum efficiency of the solid film formed by the prepared fluorescent glue is as high as 84%; the prepared fluorescent ink is non-toxic, generates no precipitates after being placed for a long time, is strong in fluorescence characteristic and can be applied to various fields such as bio-imaging, biological product identification, information storage, information encryption, counterfeiting prevention, illumination and display, sensing and photovoltaic devices.
Owner:CHANGCHUN INST OF OPTICS FINE MECHANICS & PHYSICS CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products