Composites of porous nano-featured silicon materials and carbon materials

a technology of porous nano-featured silicon and carbon materials, which is applied in the direction of silicon compounds, cell components, electrochemical generators, etc., can solve the problems of low power performance and limited capacity of graphitic anodes, insufficient current lead acid automobile batteries for next-generation all-electric and hybrid electric vehicles, and fundamental limitations of materials, etc., to achieve high first cycle efficiency, optimize lithium storage and utilization properties, and high reversible capacity

Inactive Publication Date: 2019-03-28
GRP 14 TECH INC
View PDF1 Cites 50 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0005]In general terms, the current invention is directed to porous silicon materials, and their manufacturing, and composites comprising the porous silicon materials and carbon materials, and their manufacturing. The porous silicon materials and the composites that contain the porous silicon materials and carbon materials provide optimized lithium storage and utilization properties. The novel porous silicon and composite materials find utility in any number of electrical energy storage devices, for example as electrode material in lithium-based electrical energy storage devices (e.g., lithium ion batteries). Electrodes comprising the porous silicon and composite materials display high reversible capacity, high first cycle efficiency, high power performance or any combination thereof. The present inventors have discovered that such improved electrochemical performance is related, at least in part, to the porous silicon and carbon materials physical and chemical properties such as surface area, pore structure, crystallinity, surface chemistry and other properties as well as the approaches used to manufacture and compound the materials.
[0041]Accordingly, in some embodiment the present disclosure provides a porous carbon-impregnated silicon material having high first cycle efficiency and high eversible capacity when incorporated into an electrode of lithium based energy storage device. In some embodiments, the lithium based electrical energy storage device is a lithium ion battery or lithium ion capacitor.

Problems solved by technology

For example, current lead acid automobile batteries are not adequate for next generation all-electric and hybrid electric vehicles due to irreversible, stable sulfate formations during discharge.
Traditional lithium ion batteries are comprised of a graphitic carbon anode and a metal oxide cathode; however such graphitic anodes typically suffer from low power performance and limited capacity.
However, these materials are fundamentally limited by the substantial swelling that occurs when they are fully lithiated.
This swelling and shrinkage when the lithium is removed results in an electrode that has limited cycle life and low power.
The solution thus far has been to use very small amounts of alloying electrochemical modifier in a largely carbon electrode, but this approach does not impart the desired increase in lithium capacity.
However none of these processes has proven to combine a scalable process that results in the desired properties.
Current technology for achieving nano sized silicons are expensive and difficult to scale, for instance technologies based on vapor deposition of silicon-containing gases such as silane or trichlorosilane.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Composites of porous nano-featured silicon materials and carbon materials
  • Composites of porous nano-featured silicon materials and carbon materials
  • Composites of porous nano-featured silicon materials and carbon materials

Examples

Experimental program
Comparison scheme
Effect test

example 1

Etching of Al—Si Alloy to Yield Bulk Porous Silicon

[0382]Aluminum-silicon alloy was dispersed in water and mixed by overhead mixer. Hydrochloric acid was added the dispersion over time, generating heat and accomplishing the etching. To avoid boiling, the heat generated is removed from the reactor by adding water ice to the system. Other modes to remove heat, such as employing a heat exchanger of varying modes of other approaches can also be employed, as known in the art. After the etching reaction subsided, the solids were allowed to settle in the reaction tank, and excess water decanted. The wet cake was dried in an oven, for example at 130 C, to yield dried, porous silicon with nano-scaled features. Alternatively, additional drying at a higher temperature, for example 450 C under an inert environment such as nitrogen gas, is also employed to yield the final dried, porous silicon. Alternatively, additional drying at a higher temperature, for example 1050 C under an inert environmen...

example 2

Particle Size Reduction of Bulk Porous Silicon

[0384]The bulk porous silicon from Example 1 can be size reduced, for example by methods known in the art such as grinding, ball milling, jet milling, water jet milling, and other approaches known in the art. In one embodiment, the porous silicon is particle sized reduced by jet milling. Example particle size distributions before and after jet milling are shown in FIG. 2 and FIG. 3, respectively. Before jet milling, the measured Dv0, Dv1, Dv5, Dv10, Dv20, Dv50, Dv80, Dv890, Dv95, Dv100 were 167 nm, 250 nm, 384 nm, 506 nm, 742 nm, 1.96 um, 4.63 um, 6.64 um, 12.0 um, and 16.2 um, respectively. This material was predominantly micron-sized, for example the Dv50 was 1.96 microns. After jet milling, the measured Dv0, Dv1, Dv5, Dv10, Dv20, Dv50, Dv80, Dv90, Dv99, and Dv100 were 146 nm, 194 nm, 290 nm, 388 nm, 505 nm, 766 nm, 1.10 um, 1.28 um, 1.65 um, and 1.87 um, respectively.

[0385]As can be seen, the porous silicon described herein was suffic...

example 3

Particle Size Reduction of Non-Porous Silicon

[0386]Employing the same jet milling strategy as for Example 2, an attempt was conducted to particle size reduce a commercially available non-porous silicon. Example particle size distributions before and after jet milling are shown in FIG. 4 and FIG. 5, respectively. Before jet milling, the measured Dv0, Dv1, Dv5, Dv10, Dv20, Dv50, Dv80, Dv890, Dv95, Dv100 were 147 nm, 247 nm, 546 nm, 702 nm, 942 nm, 1.66 um, 3.03 um, 4.64 um, 17.1 um, and 23.9 um, respectively. This material was predominantly micron-sized, for example the Dv50 was 1.66 microns. After jet milling, the measured Dv0, Dv1, Dv5, Dv10, Dv20, Dv50, Dv80, Dv90, Dv99, and Dv100 were 147 nm, 245 nm, 525 nm, 685 nm, 924 nm, 1.62 nm, 2.79 um, 3.79 um, 12.5 um, and 18.6 um, respectively. As can be seen, the non-porous silicon was non-friable. There was no appreciable particle size reduction upon jet milling the jet milled non-porous silicon remained micron-sized, specifically, the D...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
specific surface areaaaaaaaaaaa
specific surface areaaaaaaaaaaa
specific surface areaaaaaaaaaaa
Login to view more

Abstract

Composites of porous nano-featured silicon and various materials, such as carbon, are provided. The composites find utility in various applications, such as electrical energy storage electrodes and devices comprising the same.

Description

BACKGROUNDTechnical Field[0001]The present invention generally relates to porous nano-featured silicon materials, and composite materials comprising carbon and porous nano-featured silicon, specifically composites wherein the porous nano-featured silicon is impregnated with carbon. Related manufacturing methods are also disclosed. The silicon materials exhibit nano-features and extraordinary friability. The porous silicon nano-featured silicon materials and / or carbon-impregnated silicon materials have utility either alone or in combination with other materials, for example, combined with carbon particles, binders, or other components to provide a composition of matter for energy storage applications. Said energy storage applications include employing the materials herein as electrode materials, particularly anode materials, for lithium ion batteries and related energy storage device employing lithium or lithium ions, for instance lithium air batteries. Thus, the present invention al...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): H01M4/38H01M4/587H01M4/36H01M10/0525C01B33/021C09K23/54
CPCH01M4/386H01M4/587H01M4/366H01M10/0525C01B33/021H01M2004/021C01P2004/03C01P2002/72C01P2002/85C01P2006/11C01P2006/12C01P2006/14C01P2006/17C01P2006/40C23F1/00C01P2006/10C01P2006/16C01P2006/21C01P2006/80Y02E60/10Y02E60/50H01M8/1037H01M2004/027
Inventor FEAVER, AARON M.THOMPKINS, LEAH A.GERAMITA, KATHARINEKRON, BENJAMIN E.SAKSHAUG, AVERY J.FREDRICK, SARAHCOSTANTINO, HENRY R.GOODWIN, CHADTIMMONS, CHRISTOPHERAFKHAMI, FARSHIDSTRONG, ADAM
Owner GRP 14 TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products