Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

195 results about "Linearizer" patented technology

Linearizers are electronic circuits which improve the non-linear behaviour of amplifiers to increase efficiency and maximum output power. Creating circuits with the inverted behaviour to the amplifier is one way to implement this concept. These circuits counteract the non-linearities of the amplifier and minimize the distortion of the signal. This increases linear operating range up to the saturation (maximum output power) of the amplifier. Linearized amplifiers have a significantly higher efficiency with improved signal quality. There are different concepts to linearize an amplifier, including pre- and post-distortion and feedback linearization. Most commonly used is pre-distortion linearization.

Compensator for removing nonlinear distortion

The present invention is a computationally-efficient compensator for removing nonlinear distortion. The compensator operates in a digital post-compensation configuration for linearization of devices or systems such as analog-to-digital converters and RF receiver electronics. The compensator also operates in a digital pre-compensation configuration for linearization of devices or systems such as digital-to-analog converters, RF power amplifiers, and RF transmitter electronics. The compensator effectively removes nonlinear distortion in these systems in a computationally efficient hardware or software implementation by using one or more factored multi-rate Volterra filters. Volterra filters are efficiently factored into parallel FIR filters and only the filters with energy above a prescribed threshold are actually implemented, which significantly reduces the complexity while still providing accurate results. For extremely wideband applications, the multi-rate Volterra filters are implemented in a demultiplexed polyphase configuration which performs the filtering in parallel at a significantly reduced data rate. The compensator is calibrated with an algorithm that iteratively subtracts an error signal to converge to an effective compensation signal. The algorithm is repeated for a multiplicity of calibration signals, and the results are used with harmonic probing to accurately estimate the Volterra filter kernels. The compensator improves linearization processing performance while significantly reducing the computational complexity compared to a traditional nonlinear compensator.
Owner:LINEARITY LLC

Active predistorting linearizer with agile bypass circuit for safe mode operation

An active predistorting linearizer with agile bypass circuit for safe mode operation is used in conjunction with an amplifier. This linearizer comprises a controllable input variable-attenuator and drive-amplifier circuit supplied with the input signal to attenuate and amplify the input signal. A predistorter includes a controllable phase-shifting and amplitude-adjusting path supplied with the attenuated and amplified input signal to distort the latter signal and produce a predistorted output signal. A controllable output variable-attenuator and drive-amplifier circuit is supplied with the predistorted output signal to attenuate and amplify this predistorted output signal before supplying it to the power amplifier. A phase-shifting and amplitude-adjusting controller is connected to the controllable input variable-attenuator and drive-amplifier circuit, the controllable phase-shifting and amplitude-adjusting path, and the controllable output variable-attenuator and drive-amplifier circuit. Finally, a bypass extends in parallel with the series circuit including the serially interconnected input variable-attenuator and drive-amplifier circuit, controllable phase-shifting and amplitude-adjusting path, and output variable-attenuator and drive-amplifier circuit. This bypass defines a bypass circuit established in response to a fault condition in the series circuit to bypass the faulty series circuit.
Owner:MITEC TELECOM

Digital pre-distortion technique using nonlinear filters

A linearizer and method. In a most general embodiment, the inventive linearizer includes a characterizer coupled to an input to and an output from said circuit for generating a set of coefficients and a predistortion engine responsive to said coefficients for predistorting a signal input to said circuit such that said circuit generates a linearized output in response thereto. In a specific application, the circuit is a power amplifier into which a series of pulses are sent during an linearizer initialization mode of operation. In a specific implementation, the characterizer analyzes finite impulse responses of the amplifier in- response to the initialization pulses and calculates the coefficients for the feedback compensation filter in response thereto. In the preferred embodiment, the impulse responses are averaged with respect to a threshold to provide combined responses. In the illustrative embodiment, the combined responses are Fast Fourier Transformed, reciprocated and then inverse transformed. The data during normal operation is fed back to the data capture, corrected for distortion in the feedback path from the output of the amplifier, converted to basedband, synchronized and used to provide the coefficients for the predistortion linearization engine. As a result, in the best mode, each of the coefficients used in the predistortion linearization engine can be computed by solving the matrix equation HW=S for W, where W is a vector of the weights, S is a vector of predistortion linearization engine outputs, and H is a matrix of PA return path inputs as taught herein.
Owner:MICROELECTRONICS TECH INC

Amplifier linearizer

The present invention provides an advanced adaptive predistortion linearization technique to dramatically reduce nonlinear distortion in power amplifiers over a very wide instantaneous bandwidth (up to 2 GHz) and over a wide range of amplifier types, input frequencies, signal types, amplitudes, temperature, and other environmental and signal conditions. In an embodiment of the invention, the predistortion linearization circuitry comprises (1) a higher-order polynomial model of an amplifier's gain and phase characteristics—higher than a third-order polynomial model; (2) an adaptive calibration technique; and (3) a heuristic calibration technique. The higher-order polynomial model is generated by introducing, for example, a plurality of multi-tone test signals with varying center frequency and spacing into the power amplifier. From the power amplifier's corresponding output, the nonlinearities are modeled by employing a higher-order curve fit to capture the irregularities in the nonlinear transfer function. Different distortion transfer functions can be implemented for different operating conditions. The adaptive calibration technique is based on a feedback analysis technique, which updates the applicable distortion transfer function by analyzing the error signal between the introduced input signal and the output signal in real-time. The heuristic calibration technique implements different distortion transfer functions based on historical operating conditions and optimal configurations of the power amplifier.
Owner:TM IP HLDG LLC

Active predistorting linearizer with agile bypass circuit for safe mode operation

An active predistorting linearizer with agile bypass circuit for safe mode operation is used in conjunction with an amplifier. This linearizer comprises a controllable input variable-attenuator and drive-amplifier circuit supplied with the input signal to attenuate and amplify the input signal. A predistorter includes a controllable phase-shifting and amplitude-adjusting path supplied with the attenuated and amplified input signal to distort the latter signal and produce a predistorted output signal. A controllable output variable-attenuator and drive-amplifier circuit is supplied with the predistorted output signal to attenuate and amplify this predistorted output signal before supplying it to the power amplifier. A phase-shifting and amplitude-adjusting controller is connected to the controllable input variable-attenuator and drive-amplifier circuit, the controllable phase-shifting and amplitude-adjusting path, and the controllable output variable-attenuator and drive-amplifier circuit. Finally, a bypass extends in parallel with the series circuit including the serially interconnected input variable-attenuator and drive-amplifier circuit, controllable phase-shifting and amplitude-adjusting path, and output variable-attenuator and drive-amplifier circuit. This bypass defines a bypass circuit established in response to a fault condition in the series circuit to bypass the faulty series circuit.
Owner:MITEC TELECOM
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products