Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

156 results about "Amorphous matrix" patented technology

The amorphous matrix of the nucleolus is digested by pepsin and is therefore protein in nature. There is strong evidence based on autoradiographic studies that nucleolar RNA is discharged into the cytoplasm; there is also cytological evidence that this is so.

Fe-based amorphous or nanocrystalline soft magnetic alloy and preparation method thereof

InactiveCN101650999AImprovement and optimization of comprehensive soft magnetic propertiesLow costMagnetic materialsElectric arc furnaceAmorphous matrix
The invention discloses a Fe-based amorphous or nanocrystalline soft magnetic alloy, aiming to favorable performance and low cost. Alloy components can be expressed as FeaSibBcCudNbeMf, wherein M is Al, Ni or P; a, b, c, d, e and f are atom percentages, and the change range is as follows: a is more than or equal to 65 and less than or equal to 85, b is more than or equal to 5 and less than or equal to 20, c is more than or equal to 5 and less than or equal to 25, d is more than or equal to 0 and less than or equal to 5, e is more than or equal to 0 and less than or equal to 5, and f is more than or equal to 0.1 and less than or equal to 10; and a+b+c+d+e+f=100. The preparation method comprises the following steps: placing raw materials of pure ferrum, pure copper, and the like into a vacuum electric arc furnace to smelt to obtain an alloy ingot; crushing, placing into a quartz test tube, and preparing an amorphous alloy ribbon by using a single-rolling ribbon throwing method; placing into a tubular annealing furnace, adjusting the temperature to 510-580 DEG C, isothermally annealing under the protection of Ar gas and getting out of the furnace to cool; and obtaining amorphous alloys with different microstructures or nanocrystalline alloys with nanometer crystal particles evenly arranged on an amorphous matrix through controlling alloy cooling speed and heat treatment temperature as well as time.
Owner:TAIYUAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Ti-Zr-Cu-Be four-element amorphous composite with processing hardening capacity and preparation method thereof

The invention discloses a Ti-Zr-Cu-Be four-element amorphous composite with the processing hardening capacity and a preparation method thereof. The composite is a type of amorphous alloy composite containing a dendritic crystal phase, wherein the dendritic crystal phase is prepared from the chemical components of 59-60 parts of Ti, 38-39 parts of Zr and 1-3 parts of Cu, the volume fraction of the dendritic crystal phase is 5-95%, and an amorphous matrix is prepared from the chemical components of 33-34 parts of Ti, 35-36 parts of Zr, 8-9 parts of Cu and 21-24 parts of Be. The dendritic crystal phase has the deformation-induced Martensite phase transformation characteristic, the composite shows excellent comprehensive mechanical properties of high strength, high plasticity, processing hardening and the like under the actions of tension and compression loads, for example, under the tension load, the processing hardening behavior is remarkable, the plastic deformation capacity is 6-15%, and the strength is 1100-1900 MPa. Meanwhile, by means of Martensite phase transformation, the composite has the super-elastic characteristic under the tension load through cyclic loading, for example, elastic deformation can be 2.7-3%. As for the composite, the chemical composition is simple, the chemical components of the second phase are relatively stable, and structural design and controllable preparation of the composite are facilitated.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Fe-based nanocrystalline soft magnetic alloy and preparation method

ActiveCN111020410AReduce the content of precious metal elementsImprove thermal stabilityMagnetic materialsAmorphous matrixHeat treated
The invention discloses an Fe-based nanocrystalline soft magnetic alloy. The molecular formula of the alloy is FeaSibBcMdCuePfAlg, M refers to the metallic element Nb, Mo, V, Mn or Cr, a, b, c, d, e,f and g are mole percentage content of corresponding atoms, b is larger than or equal to 6 but smaller than or equal to 15, c is larger than or equal to 5 but smaller than or equal to 12, d is largerthan or equal to 0.5 but smaller than or equal to 3, e is larger than or equal to 0.5 but smaller than or equal to 1.5, f is larger than or equal to 0.5 but smaller than or equal to 3, g is larger than or equal to 0.5 but smaller than or equal to 10, and the balance is Fe and inevitable trace impure elements; the structure of the Fe-based nanocrystalline soft magnetic alloy is the two-phase alloywith the Fe adopting the body-centered cubic structure and Fe(Si, Al) mixed nanocrystalline grains embedded in an amorphous matrix, and the average size ranges from 10 nm to 13 nm. The invention further provides a preparation method of the Fe-based nanocrystalline soft magnetic alloy. The method includes two-step heating and two-step cooling heat treatment. The Fe-based nanocrystalline soft magnetic alloy has the advantages of low cost, excellent soft magnetic property, high corrosion resistance as well as good manufacturability and heat treatment processability, and has the broad applicationprospects in the fields of noise suppression, filtration, wireless charging and the like in complex and harsh environments.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

Magneto-elastic amorphous wire material and magnetoelastic displacement transducer

Magneto-elastic amorphous alloy material and a preparation method thereof are provided. The material is composed of FexReyBz, wherein, Re is one or more than two of La, Sm, Tb, Dy and Y. The preparation method is to mix and melt the FexReyBz into master alloy according to the atom percentage, produce amorphous wires on self-developed wire spraying equipment, strengthen internal stress through drawing the wires and improve the magneto-elastic performance of the wires. The material is provided with the 10<-3> vertical large magnetostrictive coefficient. And through the quenching and rapid setting preparation method, extremely large inner stress gradient from the surface to the core of the wires is made. The material is also provided with large inner stress anisotropy performance, and part of magneto-elastic performance is produced. The surface crystallization layer of the wires, the thickness of which is tens of nanometers to hundreds of nanometers, and amorphous matrixes produce magnetocrystalline anistotropy energies which strengthen the magneto-elastic performance of the wires. The material is provided with the vertical large magnetostrictive coefficient and makes use of a self-developed displacement sensor and a measurement instrument. Compared with the present import super-magnetostrictive displacement sensor, the sensor has the advantages of large investigation depth, high precision and strong vibration resistance capacity.
Owner:北京国浩微磁电子智能传感器技术研究所
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products