Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

185 results about "Co element" patented technology

Preparation method of nickel-cobalt-manganese ternary material enabling element content in gradient distribution

InactiveCN108598466AImprove co-precipitation synthesis processImprove stabilitySecondary cellsPositive electrodesManganeseLithium-ion battery
The invention belongs to the technical field of the lithium ion battery material preparation, and specifically relates to a preparation method of a nickel-cobalt-manganese ternary material enabling element content in gradient distribution. The chemical formula of the positive material is LiNixCoyMnzO2, x is not less than 0.5 and not more than 0.9, and the sum of x, y and z is equal to 1. The preparation process disclosed by the invention is based on co-precipitation method principle, the concentration of the metal ion entering the reaction kettle is continuously changed by changing the feedingway, the Mn element concentration is gradually increased, the concentration of each of the Ni element and the Co element is gradually reduced, thereby synthesizing the nickel-enriched positive material precursor particle with gradiently increased Mn element content and gradiently reduced Ni element content from center to the surface, and finally the nickel-enriched positive material with elementsin gradient distribution is formed by calcining the nickel-enriched positive material precursor particle with the lithium source in a mixed way. The full-gradient material is obviously different fromthe material with uniformly distributed elements from inside to outside and synthesized through the common co-precipitation method, and the higher specific capacity and good circulating performance and heat stability are provided.
Owner:HARBIN INST OF TECH AT WEIHAI

Castable and forgeable solid solution tungsten alloy and preparation method

The invention discloses castable and forgeable solid solution tungsten alloy and a preparation method, and belongs to the technical field of refractory alloy. According to the chemical components, thecastable and forgeable solid solution tungsten alloy comprises, by weight percentage, 20%-75% of W, 0%-20% of Mo, 0%-20% of Nb, 0%-20% of Ta, 0%-10% of Hf, 0%-10% of V, 0%-10% of Zr, 0%-10% of Ti, 0%-10% of Al, 0%-5% of Cu and the balance Ni or Co and inevitable impurity elements and microelements, specifically, the Ni element and the Co element can be partially replaced by one or two or more elements of 0%-50% of Ir, 0%-30% of Fe, 0%-20% of Cr, 0%-20% of Re and 0%-20% of Ru. The castable and forgeable solid solution tungsten alloy further comprises the following one or two or more grain boundary strengthening elements of 0.001%-1.0% of C, 0.001%-1.0% of B, 0.001%-1.0% of Y, 0.001%-1.0% of La or Ce or the rare earth element, 0.001%-1.0% of Mg and 0.001%-1.0% of Ca. The castable and forgeable solid solution tungsten alloy has the advantages of being high in density, ultrahigh in strength, high in toughness and high in hot-working performance. The alloy is castable and forgeable and canbe formed through 3D printing, the density ranges from 11.0g/cm<3> to 15.0g/cm<3>, the impact toughness is 80J/cm<2> or above, and the tensile strength is 1700MPa or above.
Owner:CENT IRON & STEEL RES INST

AlCoCrFeMn high-entropy alloy with non-equal atomic ratio and preparation method of AlCoCrFeMn high-entropy alloy

The invention discloses an AlCoCrFeMn high-entropy alloy with a non-equal atomic ratio and a preparation method of the AlCoCrFeMn high-entropy alloy. The atomic ratio of all elements of Al to Co to Crto Fe to Mn in the high-entropy alloy is equal to (0.3-0.7): to 2 to 1 to 1 to 1. The preparation method comprises the following steps that (1) a raw material is taken in proportion, and cleaning anddrying are conducted; (2) the raw material is put into a non-consumable arc melting furnace, vacuumizing is conducted and protective gas is added; (3) Ti which is arranged in the furnace in advance is firstly smelted, then the raw material is smelted, and suction casting is conducted by using a copper mold to form an alloy ingot; (4) the alloy ingot is subjected to solid solution, water quenchingand rolling deformation; and (5) the deformed alloy ingot is annealed to obtain the AlCoCrFeMn high-entropy alloy with the unequal atomic ratio. According to the AlCoCrFeMn high-entropy alloy with the non-equal atomic ratio and the preparation method of the AlCoCrFeMn high-entropy alloy, by adding a certain amount of Co element, the strength of the high-entropy alloy is improved, the content of the Co element is increased, and the alloy has good thermal stability; and the plasticity of the high-entropy alloy is adjusted by adding a certain amount of Al element, and the prepared high-entropy alloy has good strength and plasticity.
Owner:JIANGSU UNIV OF TECH

Supported type catalyst, preparation method thereof, application thereof and Fischer-Tropsch synthesis method thereof

The invention discloses a supported type catalyst which comprises a carrier as well as an active ingredient Co element, a noble metal MNoble element and a non-noble metal auxiliary element supported on the carrier. The supported type catalyst is characterized in that a weight ratio of Co to the noble metal (in terms of a metal element) meets a relationship (MNoble/MCo)XPS/(MNoble/MCo)XRF=2.0-20.0, wherein MNoble/MCo)XPS is a weight ratio of a catalyst noble metal component represented by X-ray photoelectron spectroscopy to Co in terms of metal elements; and (MNoble/MCo)XRF is a weight ratio of the catalyst noble metal component represented by X-ray fluorescence spectrum to Co in terms of metal elements. The noble metal component is at least one of Pt, Pd, Ru, Rh and Ir. The invention also provides a preparation method for the catalyst and the Fischer-Tropsch synthesis method for the catalyst. Compared with a catalyst with the same metal content prepared in the prior art, the supported type catalyst has the advantages that a Fischer-Tropsch synthesis catalyst containing noble metal has relatively high C<5+> selectivity and relatively low methane selectivity while relatively high reaction activity is kept.
Owner:CHINA PETROLEUM & CHEM CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products