Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1250results about "Preparation by carbon monoxide reaction" patented technology

Chemical processing microsystems comprising high-temperature parallel flow microreactors

A chemical processing microsystem useful for identifying and optimizing materials (e.g., catalysts) that enhance chemical processes or for characterizing and/or optimizing chemical processes is disclosed. The chemical processing microsystem comprises a plurality of microreactors 600 and, in a preferred embodiment, a plurality of microseparators 900 integral with the chemical processing microsystem 10. The microreactors 600 are preferably diffusion-mixed microreactors formed in a plurality of laminae that include a modular, interchangeable candidate-material array 100. The material array 100 comprises a plurality of different candidate materials (e.g., catalysts), preferably arranged at separate, individually addressable portions of a substrate (e.g., wafer). The microseparators 900 are similarly formed in a plurality of laminae that include a modular, interchangeable adsorbent array 700. The adsorbent array 700 comprises one or more adsorbents, preferably arranged at separate, individually addressable portions of a substrate to spatially correspond to the plurality of different candidate materials. Modular microfluidic distribution systems are also disclosed. The chemical processing microsystem can be integrated into a material evaluation system that enables a comprehensive combinatorial material science research program.
Owner:FREESLATE

Methods and apparatus for fluid distribution in microfluidic systems

A chemical processing microsystem useful for identifying and optimizing materials (e.g., catalysts) that enhance chemical processes or for characterizing and / or optimizing chemical processes is disclosed. The chemical processing microsystem comprises a plurality of microreactors 600 and, in a preferred embodiment, a plurality of microseparators 900 integral with the chemical processing microsystem 10. The microreactors 600 are preferably diffusion-mixed microreactors formed in a plurality of laminae that include a modular, interchangeable candidate-material array 100. The material array 100 comprises a plurality of different candidate materials (e.g., catalysts), preferably arranged at separate, individually addressable portions of a substrate (e.g., wafer). The microseparators 900 are similarly formed in a plurality of laminae that include a modular, interchangeable adsorbent array 700. The adsorbent array 700 comprises one or more adsorbents, preferably arranged at separate, individually addressable portions of a substrate to spatially correspond to the plurality of different candidate materials. Modular microfluidic distribution systems are also disclosed. The chemical processing microsystem can be integrated into a material evaluation system that enables a comprehensive combinatorial material science research program.
Owner:FREESLATE

Catalyst for preparing linear-chain aldehyde in high-selectivity manner as well as preparation and application thereof

The invention discloses a high-selectivity method for preparing linear-chain aldehyde. According to the method disclosed by the invention, a phosphine-containing organic polymer self-loaded type high-dispersity metal catalyst is used, and olefin hydroformylation reaction is used for preparing the linear-chain aldehyde in a high-selectivity manner. The organic polymer self-loaded type catalyst takes one, two and three of metal Rh, Co, Pd, Ir and Rt as active components and a phosphine-containing organic polymer is used as a carrier, wherein the phosphine-containing organic polymer carrier is formed by co-polymerizing or self-polymerizing a multi-dentate organic phosphine ligand and a single-dentate organic phosphine ligand. The phosphine-containing organic polymer self-loaded type high-dispersity metal catalyst provided by the invention is applied to reactors including fixed beds, slurry beds, bubbling beds, trickle beds and the like. The method disclosed by the invention has very goodpresentation in the olefin hydroformylation reaction and can be used for producing a target product linear-chain aldehyde in the high-selectivity manner.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products