Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

321 results about "Carbon–carbon bond" patented technology

A carbon–carbon bond is a covalent bond between two carbon atoms. The most common form is the single bond: a bond composed of two electrons, one from each of the two atoms. The carbon–carbon single bond is a sigma bond and is formed between one hybridized orbital from each of the carbon atoms. In ethane, the orbitals are sp³-hybridized orbitals, but single bonds formed between carbon atoms with other hybridizations do occur (e.g. sp² to sp²). In fact, the carbon atoms in the single bond need not be of the same hybridization. Carbon atoms can also form double bonds in compounds called alkenes or triple bonds in compounds called alkynes. A double bond is formed with an sp²-hybridized orbital and a p-orbital that is not involved in the hybridization. A triple bond is formed with an sp-hybridized orbital and two p-orbitals from each atom. The use of the p-orbitals forms a pi bond.

Copper-catalyzed formation of carbon-heteroatom and carbon-carbon bonds

The present invention relates to copper-catalyzed carbon-heteroatom and carbon-carbon bond-forming methods. In certain embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between the nitrogen atom of an amide or amine moiety and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In additional embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between a nitrogen atom of an acyl hydrazine and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In other embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between the nitrogen atom of a nitrogen-containing heteroaromatic, e.g., indole, pyrazole, and indazole, and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In certain embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-oxygen bond between the oxygen atom of an alcohol and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. The present invention also relates to copper-catalyzed methods of forming a carbon-carbon bond between a reactant comprising a nucleophilic carbon atom, e.g., an enolate or malonate anion, and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. Importantly, all the methods of the present invention are relatively inexpensive to practice due to the low cost of the copper comprised by the catalysts.
Owner:MASSACHUSETTS INST OF TECH

Ruthenium metathesis catalyst and method for producing olefin reaction product by metathesis reaction using the same

The invention has an object of safely and simply preparing a large amount of a ruthenium metathesis catalyst, which is used as a catalyst for a carbon-carbon bond formation using, particularly, a metathesis reaction. The metathesis catalyst has the following complex composition (A) or (B). The composition (A) includes RuX12(arene)(PR1R2R3) and R4CHX22, R5C=CH or R4CHX2 and a reducing agent, wherein X1 and X2 respectively are a halogen atom; arene is a hydrocarbon having a benzene ring; R1, R2 and R3, which may be the same or different, respectively are an alkyl group having 1-8 carbon atoms, a cycloalkyl group having 3-8 carbon atoms or an optionally substituted aryl group, wherein the substituent group is an alkyl group having 1-8 carbon atoms, an alkoxy group having 1-8 carbon atoms, an alkylamino group having 1-8 carbon atoms or a halogen atom; R4 is an alkyl group which has 1-8 carbon atoms and may have an ether bond or an ester bond, an optionally subsituted aryl group, wherein the substituent group is a halogen atom or a hydroxyl group; or cycloalkyl group having 3-8 carbon atoms; and R5 is an optionally substituted alkyl group which has 1-8 carbon atoms and may have an ether bond or an ester bond, wherein the substituent group is a halogen atom or a hydroxyl group, an aryl group or a cycloalkyl group having 3-8 carbon atoms. The composition B includes [RuX12(arene)]2, PR1R2R3, R5C=CH or R4CHX2 and a reducing agent, wherein X1, arene, R1, R2, R3, R4 and R5 are the same as defined above.
Owner:TAKASAGO INTERNATIONAL CORPORATION

Copper-catalyzed formation of carbon-heteroatom and carbon-carbon bonds

One aspect of the present invention relates to copper-catalyzed carbon-heteroatom and carbon-carbon bond-forming methods. In certain embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-sulfur bond between the sulfur atom of a thiol moiety and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In other embodiments, the present invention relates to copper(II)-catalyzed methods of forming a carbon-nitrogen bond between the nitrogen atom of an amide and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In certain embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-carbon bond between the carbon atom of cyanide ion and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In another embodiment, the present invention relates to a copper-catalyzed method of transforming an aryl, heteroaryl, or vinyl chloride or bromide into the corresponding aryl, heteroaryl, or vinyl iodide. Yet another embodient of the present invention relates to a tandem method, which may be practiced in a single reaction vessel, wherein the first step of the method involves the copper-catalyzed formation of an aryl, heteroaryl, or vinyl iodide from the corresponding aryl, heteroaryl, or vinyl chloride or bromide; and the second step of the method involves the copper-catalyzed formation of an aryl, heteroaryl, or vinyl nitrile, amide or sulfide from the aryl, heteroaryl, or vinyl iodide formed in the first step.
Owner:MASSACHUSETTS INST OF TECH

Ruthenium metathesis catalyst and method for producing olefin reaction product by metathesis reaction using the same

The invention has an object of safely and simply preparing a large amount of a ruthenium metathesis catalyst, which is used as a catalyst for a carbon-carbon bond formation using, particularly, a metathesis reaction. The metathesis catalyst has the following complex composition (A) or (B). The composition (A) includes RuX12(arene)(PR1R2R3) and R4CHX22, R5C =CH or R4CHX2 and a reducing agent, wherein X1 and X2 respectively are a halogen atom; arene is a hydrocarbon having a benzene ring; R1, R2 and R3, which may be the same or different, respectively are an alkyl group having 1-8 carbon atoms, a cycloalkyl group having 3-8 carbon atoms or an optionally substituted aryl group, wherein the substituent group is an alkyl group having 1-8 carbon atoms, an alkoxy group having 1-8 carbon atoms, an alkylamino group having 1-8 carbon atoms or a halogen atom; R4 is an alkyl group which has 1-8 carbon atoms and may have an ether bond or an ester bond, an optionally subsituted aryl group, wherein the substituent group is a halogen atom or a hydroxyl group; or cycloalkyl group having 3-8 carbon atoms; and R5 is an optionally substituted alkyl group which has 1-8 carbon atoms and may have an ether bond or an ester bond, wherein the substituent group is a halogen atom or a hydroxyl group, an aryl group or a cycloalkyl group having 3-8 carbon atoms. The composition B includes [RuX12(arene)]2, PR1R2R3, R5C=CH or R4CHX2 and a reducing agent, wherein X1, arene, R1, R2, R3, R4 and R5 are the same as defined above.
Owner:TAKASAGO INTERNATIONAL CORPORATION

Composition for promoting adhesion between rubber and textiles

InactiveUS6046262ALimited shelf lifeStable aqueous dispersion/solutionAdhesive processesImpression capsSilane compoundsPolyester
A composition for the promotion of adhesion between a rubber formulation and a textile substrate is provided. The inventive composition comprises either a mixture of specific amine functional silanes and organo-functional silanes having reactive groups or groups with an affinity for rubber. The inventive method entails the use of the inventive composition or a silane compound having both an amine moiety and a reactive group having an affinity for rubber formulations, particularly an unsaturated carbon-carbon bond. The composition may be utilized to adhere any standard reinforcement-type textile, such as polyester or polyamide, to a standard rubber composition, such as SBR, NBR, or EPDM. A method for adhering textiles to rubber formulations is also provided involving a pre-dip, -spray, -coat, and the like, of the inventive composition on a reinforcement-type textile surface followed by the contacting of the rubber formulation. Optionally, and preferably, the process involves the extra utilization of resorcinol-formaldehyde latex as an effective bonding agent to improve the adhesion between the two layers. The resulting textile-reinforced rubber product may be utilized as an automobile fan or timing belt, an automobile tire component, and any other rubber article which requires long-lasting, durable textile reinforcement.
Owner:MILLIKEN & CO

Method for preparing hemostatic cotton through hyaluronic acid crosslinked gelatin

The invention discloses a method for preparing hemostatic cotton through hyaluronic acid crosslinked gelatin and belongs to the field of biomedical materials. The method includes the steps that firstly, a novel hydroformylation hyaluronic acid crosslinking agent is prepared; then, the hydroformylation hyaluronic acid crosslinking agent is mixed with gelatin for foaming, refrigerating and drying are conducted, and the gelatin hemostatic cotton can be obtained after sterilization. According to the method, strong oxidant sodium periodate is utilized to oxidize a carbon-carbon bond of cis diol in the hyaluronic acid so that the hyaluronic acid can react with amidogen for formylation; the hyaluronic acid obtained after formylation serves as a macromolecular crosslinking agent and reacts with the gelatin containing an amino functional group, and the gelatin is made to form a cross-linked structure, so that mechanical performance is enhanced, and the sponge function is given to the gelatin. The gelatin is good in biocompatibility, has the hemostatic and anti-microbial functions and serves as a sponge base material, the hydroformylation hyaluronic acid serves as the crosslinking agent, the prepared hemostatic cotton is good in mechanical performance, safe and non-toxic, the hemostatic property is remarkably improved, a good pain relieving function is achieved, and the effect of promoting healing of injured tissues is achieved.
Owner:稳得希林(沈阳)生物科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products