Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

435 results about "Coating deposition" patented technology

Thermal Deposition Surface Treatment Method, System and Product

A process for treating a workpiece, said process comprising the steps of: (c) altering the temperature of a workpiece surface wherein at least one condition selected from the group of: thermal treatment rate, relative motion between the surface and said thermal treatment rate, coolant flow rate onto said surface, heating flow rate onto said surface and the relative speed between the heating means or the cooling means and the surface is controllable; (d) simultaneously measuring temperatures at a plurality of locations over the surface of the workpiece; (c) determining an average temperature of the temperatures measured in step (b); (d) comparing the average temperature to a preselected minimum temperature and a preselected maximum temperature for the workpiece; and (e) automatically adjusting at least one of the controllable conditions if said average temperature is not between the preselected minimum temperature and the preselected maximum temperature for the workpiece. A system for performing a thermal treatment process and the resulting product are also provided. Standard deviations of all temperature readings and controlling the relative motion speed between the thermal coating deposition head and the workpiece provide another improvement for obtaining temperature uniformity over the workpiece surface.
Owner:AIR PROD & CHEM INC

Base material motion type device and method for preparing nano coating through plasma discharge

The invention discloses a base material motion type device and method for preparing a nano coating through plasma discharge, and belongs to the technical field of plasmas. The device comprises electrodes, a vacuum exhaust device, a gas pipeline and a base material fixing device; and the method comprises the following steps that the base material fixing device can do motions in the space formed by the electrodes under the driving of a moving mechanism, and monomer steam is introduced into a reaction chamber to carry out plasma chemical vapor deposition, wherein the deposition process comprises a pretreatment stage and a coating stage, the plasma discharge mode in the pretreatment stage is high-power continuous discharge and the plasma discharge mode in the coating stage is small-power continuous discharge. In the preparation process of the coating, the movement characteristic of the base material and the plasma discharge energy are combined and linked; the base material does motions while the plasma discharge occurs, so that the coating deposition efficiency is improved, and the uniformity and compactness of the thickness of the coating are improved; and the coating prepared by the method has the characteristics of being waterproof, moisture-proof, and anti-fungus, and has acid solvent resistance, alkaline solvent resistance, acid salt mist resistance, alkaline salt mist resistance and the like.
Owner:JIANGSU FAVORED NANOTECHNOLOGY CO LTD

Damage-free sculptured coating deposition

We disclose a method of applying a sculptured layer of material on a semiconductor feature surface using ion deposition sputtering, wherein a surface onto which the sculptured layer is applied is protected to resist erosion and contamination by impacting ions of a depositing layer, said method comprising the steps of: a) applying a first portion of a sculptured layer with sufficiently low substrate bias that a surface onto which said sculptured layer is applied is not eroded away or contaminated in an amount which is harmful to said semiconductor device performance or longevity; and b) applying a subsequent portion of said sculptured layer with sufficiently high substrate bias to sculpture a shape from said the first portion, while depositing additional layer material. The method is particularly applicable to the sculpturing of barrier layers, wetting layers, and conductive layers upon semiconductor feature surfaces and is especially helpful when the conductive layer is copper. In the application of a barrier layer, a first portion of barrier layer material is deposited on the substrate surface using standard sputtering techniques or using an ion deposition plasma, but in combination with sufficiently low substrate bias voltage (including at no applied substrate voltage) that the surfaces impacted by ions are not sputtered in an amount which is harmful to device performance or longevity. Subsequently, a second portion of barrier material is applied using ion deposition sputtering at increased substrate bias voltage which causes resputtering (sculpturing) of the first portion of barrier layer material, while enabling a more anisotropic deposition of newly depositing material. A conductive material, and particularly a copper seed layer applied to the feature may be accomplished using the same sculpturing technique as that described above with reference to the barrier layer.
Owner:APPLIED MATERIALS INC

Continuous in-line manufacturing process for high speed coating deposition via a kinetic spray process

An improved kinetic spray system and a method for using the same in a high speed manufacturing environment are disclosed. The improved kinetic spray nozzle system comprises: a gas / powder exchange chamber connected to a first end of a powder / gas conditioning chamber having a length along a longitudinal axis of equal to or greater than 20 millimeters; a converging diverging supersonic nozzle, the supersonic nozzle having a converging section separated from a diverging section by a throat, the diverging section comprising a first portion and a second portion, with the first portion having a cross-sectional area that increases along a length of the first portion and with the second portion having a substantially constant cross-sectional area along a length of the second portion; and the converging section connected to a second end of the powder / gas conditioning chamber opposite the first end. The method includes: use of the disclosed nozzle system with the addition of hard particles that permit maximum enhancement of particle temperature while not permitting clogging of the nozzle; use of controlled particle feed rates to match the desired very high traverse speeds; and use of pre-heating of the substrate to clean it an to enhance particle bonding. With the disclosed nozzle system coupled with the disclosed methods one can apply kinetic spray coatings at traverse speeds of over 200 centimeters per second with a deposition efficiency of over 80 percent.
Owner:F W GARTNER THERMAL SPRAYING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products