Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1625 results about "Photonic-crystal fiber" patented technology

Photonic-crystal fiber (PCF) is a class of optical fiber based on the properties of photonic crystals. It was first explored in 1996 at University of Bath, UK. Because of its ability to confine light in hollow cores or with confinement characteristics not possible in conventional optical fiber, PCF is now finding applications in fiber-optic communications, fiber lasers, nonlinear devices, high-power transmission, highly sensitive gas sensors, and other areas. More specific categories of PCF include photonic-bandgap fiber (PCFs that confine light by band gap effects), holey fiber (PCFs using air holes in their cross-sections), hole-assisted fiber (PCFs guiding light by a conventional higher-index core modified by the presence of air holes), and Bragg fiber (photonic-bandgap fiber formed by concentric rings of multilayer film). Photonic crystal fibers may be considered a subgroup of a more general class of microstructured optical fibers, where light is guided by structural modifications, and not only by refractive index differences.

Single mode optical fiber

A large core photonic crystal fiber for transmitting radiation having a core comprising a substantially transparent core material and having a core diameter of at least 5 mu. The fiber also comprises a cladding region surrounding the length of core material, wherein the cladding region comprises a first substantially transparent cladding material, having a first refractive index, and wherein the first substantially transparent cladding material has embedded along its length a substantially periodic array of holes, wherein the holes are filled with a second cladding material having a second refractive index less than the first refractive index, such that radiation input to the optical fiber is transmitted along the length of the core material in a single mode of propagation. In a preferred embodiment, the core diameter may be at least 20 mu, and may be as large as 50 mu. The fiber is capable of transmitting higher power radiation than conventional fibres, whilst maintaining propagation in a single mode. The core material may be doped with a material capable of providing amplification under the action of pump radiation input to the fiber. The invention also relates to a fiber amplifier and a fiber laser comprising a doped large core photonic crystal fiber. The fiber may also be used in a system for transmitting radiation comprising a plurality of lengths of large core photonic crystal fiber, separated by large core photonic crystal fiber amplifiers, such that the power of radiation transmitted through the system is maintained above a predetermined threshold power.
Owner:NKT RES & INNOVATION

Photonic crystal magneto-optical circulator and preparation method thereof

The invention relates to a photonic crystal magneto-optical circulator comprising a first medium material columns in an air background, the first medium material columns are arranged in the shape of two-dimensional tetragonal lattice; the photonic crystal magneto-optical circulator also comprises a photonic crystal waveguide which includes a transverse photonic crystal waveguide and a longitudinal photonic crystal waveguide which are mutually intercrossed, a second medium material column used for guiding light and positioned at the cross connection of the transverse photonic crystal waveguideand the longitudinal photonic crystal waveguide, four identical magneto-optical material columns uniformly positioned around the second medium material columns, and at least three identical third medium material columns respectively positioned outside the three magneto-optical material columns. The photonic crystal magneto-optical circulator provided by the invention can respectively realize single direction optical circulating transmission among three ports arranged in the shape of T and among four ports arranged in the shape of a cross. The photonic crystal magneto-optical circulator provided by the invention is advantageous in that it has a concise form and a compact structure, and is suitable for serving as an anti-interference component in a photonic crystal integrated optical circuit.
Owner:SHENZHEN UNIV

Magnetofluid filling photonic crystal optical fiber F-P magnetic field sensor

The invention discloses a magnetofluid filling photonic crystal optical fiber F-P magnetic field sensor, which belongs to the technical field of optical fiber sensing, and consists of a broadband light source 20, an optical fiber coupler 21 and optical fiber links (31, 32, 33 and 34) of the optical fiber coupler 21, a refractive index matching fluid 22, a sensor probe 23, an electromagnetic coil 18 and a current driving system 19 of the electromagnetic coil, a spectrum analyzer, a computer 24 as well as a connecting cable 26 and a connecting cable 27. The magnetofluid filling photonic crystal optical fiber F-P magnetic field sensor is characterized in that the sensor probe is formed by fusing a section of hollow photonic crystal optical fiber 12 filled with a magnetofluid 13 and a simple module optical fiber 11; the two ends of the hollow photonic crystal optical fiber are respectively stuck by a partial reflection film 14 and a total reflection mirror 15 to form an optical fiber F-P interferometric cavity structure; and the reflection rate of the magnetofluid serving as a medium in the F-P interferometric cavity is changed due to a magnetic field generated by the electromagnetic coil after conducted with a current, thereby causing the change of output spectrums so as to realize magnetic field measurement. The magnetofluid filling photonic crystal optical fiber F-P magnetic field sensor has the advantages of being low in temperature influences, simple in structure, small in size and easy to realize multi-point distribution type sense.
Owner:NORTHEASTERN UNIV

Method for preparing photonic crystals through 3D (Three-Dimensional) printing

ActiveCN103802315ADiversified structure and morphologyGeneralization of structural morphologyPhotonicsEngineering
The invention discloses a method for preparing photonic crystals through 3D (Three-Dimensional) printing. The method comprises the following steps of preparing macromolecule raw materials for 3D printing by using monodisperse colloidal particles, layering a three-dimensional solid model of photonic crystals into a plurality of two-dimensional patterns, printing the two-dimensional patterns layer by layer in sequence on a substrate and curing layer by layer to prepare three-dimensional photonic crystals which having high dielectric ratios or are suitable for network topology structures. Compared with a current preparation method of the photonic crystals, the method is quick and convenient, lo in investment costs of devices, simple in process, energy-saving and environmentally friendly and short in consumed time, and three-dimensional structure shapes of the prepared photonic crystals are diversified and extensive. The method is an ideal manner of preparing special-purpose photonic crystals in the future. The method is capable of realizing batch production; the prepared photonic crystals can be widely applicable to the scientific research and life of optical devices, tissue culture frames, super lyophobic liquid surface, anti-counterfeiting marks and ornaments, so that the photonic crystals are wide in market prospects.
Owner:SHENZHEN INST OF ADVANCED TECH

Photonic crystals and devices having tunability and switchability

A photonic crystal having reversibly tunable photonic properties. The photonic crystal includes a phase change material having a plurality of structural states that vary with respect to fractional crystallinity. Optical constants including refractive index, extinction coefficient and permittivity vary as the fractional crystallinity of the phase change material is varied thereby providing tunability of photonic crystal properties. Variations among the structural states of the phase change material are reversibly effected through the addition of energy in forms including optical or electrical energy. The photonic crystals may include defects that provide photonic states within the photonic band gap. The position of these states is tunable through the control of the fractional crystallinity of the phase change material included in the photonic crystal. Electromagnetic radiation resonators including photonic crystals having photonic states in the photonic band gap are further provided. These resonators may be used for frequency selective filtering or routing of electromagnetic radiation and permit tunable variation in the frequency and decay rates of resonant modes through control of the structural state of the phase change material. These resonators are further coupled to waveguides to provide tunable channel drop filters and narrowband reflectors.
Owner:ENERGY CONVERSION DEVICES INC

Optical coupler devices, methods of their production and use

The present invention relates in general to coupling of light from one or more input waveguides to an output waveguide or output section of a waveguide having other physical dimensions and / or optical properties than the input waveguide or waveguides. The invention relates to an optical component in the form of a photonic crystal fiber for coupling light from one component / system with a given numerical aperture to another component / system with another numerical aperture. The invention further relates to methods of producing the optical component, and articles comprising the optical component, and to the use of the optical component. The invention further relates to an optical component comprising a bundle of input fibers that are tapered and fused together to form an input coupler e.g. for coupling light from several light sources into a single waveguide. The invention still further relates to the control of the spatial extension of a guided mode (e.g. a mode-field diameter) of an optical beam in an optical fiber. The invention relates to a tapered longitudinally extending optical waveguide having a relatively larger cross section that over a certain longitudinal distance is tapered down to a relatively smaller cross section wherein the spatial extent of the guided mode is substantially constant or expanding from the relatively larger to the relatively smaller waveguide cross section. The invention may e.g. be useful in applications such as fiber lasers or amplifiers, where light must be coupled efficiently from pump sources to a double clad fiber.
Owner:CRYSTAL FIBRE AS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products