Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

218 results about "Chirped pulse amplification" patented technology

Chirped pulse amplification (CPA) is a technique for amplifying an ultrashort laser pulse up to the petawatt level with the laser pulse being stretched out temporally and spectrally prior to amplification.

Method and apparatus for high power optical amplification in the infrared wavelength range (0.7-20 mum)

InactiveUS20050271094A1Laser detailsNon-linear opticsAcousto-optic programmable dispersive filterAdemetionine
A novel method for high power optical amplification of ultrashort pulses in IR wavelength range (0.7-20 Ãm) is disclosed. The method is based on the optical parametric chirp pulse amplification (OPCPA) technique where a picosecond or nanosecond mode locked laser system synchronized to a signal laser oscillator is used as a pump source or alternatively the pump pulse is created from the signal pulse by using certain types of optical nonlinear processes described later in the document. This significantly increases stability, extraction efficiency and bandwidth of the amplified signal pulse. Further, we disclose five new practical methods of shaping the temporal and spatial profiles of the signal and pump pulses in the OPCPA interaction which significantly increases its efficiency. In the first, passive preshaping of the pump pulses has been made by a three wave mixing process separate from the one occurring in the OPCPA. In the second, passive pre-shaping of the pump pulses has been made by spectral filtering in the pump mode-locked laser or in its amplifier. In the third, the temporal shape of the signal pulse optimized for OPCPA interaction has been actively processed by using an acousto-optic programmable dispersive filter (Dazzler) or liquid crystal light modulators. In the fourth alternative method, the signal pulse intensity envelope is optimized by using passive spectral filtering. Finally, we disclose a method of using pump pulses which interact with the seed pulses with different time delays and different angular orientations allowing the amplification bandwidth to be increased. In addition we describe a new technique for high power IR optical beam delivery systems based on the microstructure fibres made of silica, fluoride or chalcogenide glasses as well as ceramics. Also we disclose a new optical system for achieving phase matching geometries in the optical parametric interactions based on diffractive optics. All novel methods of the ultrashort optical pulse amplification described in this disclosure can be easily generalized to other wavelength ranges.
Owner:MILLER ROBERT JOHN DWAYNE +3

Dielectric-coating structure reflecting mirror used for chirp pulse amplification optical spectrum shaping

The present invention relates to a chirp pulse amplifying spectrum shaping dielectric film structure reflector, which comprises a transparent substrate, a high reflectance film system, an anaglyph structure and an external protective layer. Wherein, the high reflectance film system is composed of a plurality of staggered dielectric films. A high reflectance film layer and a lower reflectance film layer of the high reflectance film closely contact the anaglyph structure. The anaglyph structure can take a plurality of shapes, such as a micro-lens high transparency film system structure, an air dielectric structure, a glass anaglyph structure or other transparent dielectric structures, including semiconductor structures. As a high-power laser chirp pulse with a plane wave structure vertically casts onto the reflector, the laser passes through the high reflectance film system and the anaglyph structure and all residual lasers are reflected to back of the reflector through the transparent substrate. Reflex intensity distribution is modulated to a needed spectrum distribution structure. The reflector of the present invention can be inserted into any place of an amplifier link and improve capacity to distinguish shaping spectrum chromatic dispersion to a certain level. Scope modulation exceeds 60% without changing phase position, thus adapting to PW devices.
Owner:SICHUAN UNIV +1

Method for improving signal-to-noise ratio of femtosecond laser by using chirp matched optical parametric chirped pulse amplification

The invention discloses a method for improving a signal-to-noise ratio of femtosecond laser by using chirp matched optical parametric chirped pulse amplification and a device thereof, which belong to the technical field of ultra-short pulses. The method comprises the following steps of: firstly, stretching the femtosecond laser with a signal-to-noise ratio to be improved output by a femtosecond laser light source into chirp signal light; secondly, performing high magnification on a signal and performing low magnification on a noise by using the chirp matched optical parametric chirped pulse amplification so as to improve the signal-to-noise ratio of the chirp signal light; and finally, compressing the chirp signal light into femtosecond laser with a high signal-to-noise ratio by using an optical pulse compressor. The device for implementing the method comprises a femtosecond laser light source, a femtosecond laser, a first non-linear optical crystal, a second non-linear optical crystal, a first light pulse stretcher, a second light pulse stretcher, an optical pulse amplifier, an optical pulse compressor, a first dichroic mirror and a second dichroic mirror. The method and the device of the invention can not only improve the signal-to-noise ratio of the femtosecond laser effectively, but also realize high-efficient amplification of the femtosecond laser.
Owner:SICHUAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products