Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

108 results about "Angular dispersion" patented technology

Aberration-corrected and energy-filtered low energy electron microscope with monochromatic dual beam illumination

One embodiment relates to an apparatus for correcting aberrations introduced when an electron lens forms an image of a specimen and simultaneously forming an electron image using electrons with a narrow range of electron energies from an electron beam with a wide range of energies. A first electron beam source is configured to generate a lower energy electron beam, and a second electron beam source is configured to generate a higher energy electron beam. The higher energy beam is passed through a monochromator comprising an energy-dispersive beam separator, an electron mirror and a knife-edge plate that removes both the high and low energy tail from the propagating beam. Both the lower and higher energy electron beams are deflected by an energy-dispersive beam separator towards the specimen and form overlapping illuminating electron beams. An objective lens accelerates the electrons emitted or scattered by the sample. The electron beam leaving the specimen is deflected towards a first electron mirror by an energy-dispersive beam separator, which introduces an angular dispersion that disperses the electron beam according to its energy. A knife-edge plate, located between the beam separator and first electron mirror, is inserted that removes all of the beam with energy larger and smaller than a selected energy and filters the beam according to energy. One or more electron lenses focus the electron beam at the reflection surface of the first electron mirror so that after the reflection and another deflection by the same energy-dispersive beam separator the electron beam dispersion is removed. The dispersion-free and energy-filtered electron beam is then reflected in a second electron mirror which corrects one or more aberrations of the objective lens. After the second reflection, electrons are deflected by the magnetic beam separator towards the projection optics which forms a magnified, aberration-corrected, energy-filtered image on a viewing screen.
Owner:ELECTRON OPTICA

Compact Bragg reflector type concave diffraction grating wavelength division multiplexer and designing method thereof

The invention discloses a compact Bragg reflector type concave diffraction grating wavelength division multiplexer and a designing method thereof. The compact Bragg reflector type concave diffractiongrating wavelength division multiplexer includes an MZI interleaving filter, two input waveguides, a Bragg reflector-type concave diffraction grating, a free transmission region and two output waveguide arrays. The designing method includes that firstly the incident angle relationship between the two input waveguides relative to the grating tooth surface is determined according to the angular dispersion relationship of the Bragg reflector-type concave diffraction grating; secondly, structural parameters of the MZI interleaving filter are determined by a designed concave grating wavelength interval; and finally the designing of the compact Bragg reflector type concave diffraction grating wavelength division multiplexer design cascaded with the MZI interleaving filter is realized. Compared with the conventional concave diffraction grating wavelength division multiplexers, the odd and even channel light outputted by the MZI interleaving filter are respectively incident on the diffractiongrating at different angles, and the output light frequency of the wavelength division multiplexer is halved using the MZI interleaving filter at an interval, the circumferential length of the Rolandcircle is fully utilized, the size of the device is effectively reduced, and the complexity of the process is lowered.
Owner:XI AN JIAOTONG UNIV

Compensator system and method for compensating angular dispersion

The invention relates to a compensator system adapted to compensate for the angular dispersion of electromagnetic beams deflected by at least one acousto-optic deflector of an optical system, wherein the angular dispersion of each deflected beam is dependent on the deflection angle obtained by the deflecting acoustic frequency of the acousto-optic deflector, characterised in that the compensator system comprises: - a first lens group for spatially separating the deflected beams of different deflection angle and angular dispersion by focusing the beams substantially into the focal plane, - a compensator element having a first surface and a second surface, and being arranged such that the first surface of the compensator element lies substantially in the focal plane of the first lens group, and the first and second surfaces of the compensator element have nominal radiuses R1 and R2 that together work as prisms with tilt angles beta and prism opening angles alphap that vary with the distance from the optical axis so as to compensate for the angular dispersion of the spatially separated deflected beams, - a second lens group arranged so as to substantially parallelise the different wavelength components of each deflected beam exiting the compensator element while maintaining the angular variation of the beams deflected at different acoustic frequencies. The invention further relates to method for compensating for the angular dispersion of electromagnetic beams deflected by at least one acousto-optic deflector of an optical system, wherein the angular dispersion of each deflected beam is dependent on the deflection angle obtained by the deflecting acoustic frequency, characterised by - spatially separating the deflected beams of different deflection angle and angular dispersion by focusing the beams via a first lens group substantially into the focal plane of the first lens group, - compensating for the angular dispersion of the spatially separated deflected beams in accordance with the angular dispersion of the given beam, - substantially parallelising the spectral components of each deflected beam while maintaining the angular variation of the beams deflected at different acoustic frequencies.
Owner:FEMTONICS

Open-loop wavelength selective external resonator and beam combining system

A variety of dense wavelength beam combining (DWBC) apparatuses are described herein that combine a plurality of individual input beams into a single output beam. DWBC apparatuses contemplated herein are open-loop configurations, i.e. configurations where the wavelength selective optics of a feedback generation system are decoupled from a beam combining system that combines a plurality of input beams each having a wavelength selected from a range of different wavelengths. Specifically, each constituent beam of the combined output beam produced by the beam combining system traverses an optical path that does not include the wavelength-selective optics of the feedback generation system. DWBC apparatuses contemplated herein further provide for matching the wavelength-dependent angular dispersion functions of optics of the feedback generation system with the wavelength-dependent angular dispersion functions of optics of the beam combining system. The external cavity laser diode array comprises edge-emitting LD (111A-111N), a focussing optics (112) for divergence control of the emitted beams onto diffracting optics (115), a retroreflector (120) and a half-wave plate (113) and a polarizer (114) for control of the output power. An intra-cavity spatial filter (116) may be used to control the spatial beam quality and an extra-cavity dispersive optics (122) for delivering a combined multi-wavelength high power beam.
Owner:TRUMPF LASER GMBH CO KG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products