Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

122 results about "Regenerative amplifier" patented technology

Regenerative Amplifier. The low energy, stretched pulses are then seeded into a repetitive pass, regenerative amplifier (pictured above at left).

Laser amplifiers with high gain and small thermal aberrations

The present invention discloses a laser amplifier with high gain and low thermally induced optical aberrations on the amplified laser beam. The amplifier designs allow simple multipass configurations to optimally extract the gain and reduce thermally induced index of refraction aberrations, making it possible to obtain an amplified laser beam of high quality combined with very high overall gains comparable to those achievable with expensive regenerative amplifiers. The amplifier includes a thin active laser solid to create the population inversion and associated heat generation within the thin laser active solid possible for the desired gain value. The system includes a cooling device in thermal contact with the thin active laser solid to provide good heat transport and high reflectivity coatings at the wavelengths of the pump and laser wavelengths. The pump light sources are laser diodes tuned to the maximum absorption of the laser active material. The amplifier also includes an optical system to transport the pump light to the laser active solid in such a way as to further confine the absorption of light along the two orthogonal directions in the plane of the laser active solid in order to get high population inversion and consequently high gains possible.
Owner:WUHAN HUARAY PRECISION LASER CO LTD

Wideband optical parametric chirped pulse amplification laser system with stable carrier envelope phase

The invention relates to a wideband optical parametric chirped pulse amplification (OPCPA) laser system with a stable carrier envelope phase. The laser system comprises a femtosecond laser device with an output wavelength of 1550nm, a spectroscope, a signal light generator, a stretcher, an angular disperser, a photonic crystal fiber frequency converter, a regenerative amplifier, multi-level Nd: yttrium aluminum garnet (YAG) amplifier, a reflection mirror, an optical parametric amplifier and a compressor. The wideband optical parametric chirped pulse amplification laser system is characterized in that a wideband signal light generated by difference frequency action has a high circular error probable (CEP) stability and a tunable characteristic of the wideband; the signal light and pump light are from the same laser device; under a condition of ignoring the environment jitter influence, the high-precision time synchronization with 10-femtosecond between a signal light pulse and a pump light pulse can be ensured, and the invention has a good frequency stabilization effect; OPCPA of the wideband is realized by means of the angular disperser, and an intermediate infrared tunable laser source is obtained.
Owner:SHANGHAI INST OF OPTICS & FINE MECHANICS CHINESE ACAD OF SCI

Method and device for transplantation of femtosecond laser nucleus

The invention relates to a method and equipment for femtosecond laser somatic cell nuclear transplantation, in particular to a micro-nano control method which adopts a light knife effect induced by femtosecond laser two-photon and optical tweezers gradient force induced by high photon density. A pump laser is started-up; the laser produced by the pump laser is introduced into a resonator of a femtosecond laser; when the oscillation is done, the energy of the ultrashort femtosecond laser pulse is amplified through a regenerative amplifier, and the pulse number and the repeated frequency of laser output are chosen. The emitted femtosecond laser is divided into two beams of light, one of which used for realizing the femtosecond optical tweezers, and the other of which is used for realizing the function of the femtosecond optical tweezers through a half-permeable and semi-reflecting mirror, and then the two beams of light are coupled with an optical path through another half-permeable andsemi-reflecting mirror to realize the amplification of a spot light area; then the light beams is focused on a target cell, and the harmless transplantation operation of the somatic cell nuclear is done. A switch for controlling a light valve is arranged in a software control system, which can not only realize the operation of the laser spot on the target cell, but also adjust the scanning speed and change the exposure time to meet different requirements and enhance the success rate of the somatic cell nuclear transplantation.
Owner:JIANGSU UNIV

Method and device for nervus damnification and regeneration renovation by using femtosecond laser

The invention adopts the femtosecond laser two-photon induced photo knife effect and the high photon density induced optical tweezers gradient force function for carrying out a micro-nano manipulation, which is applicable to the study of the injury, regeneration and repair of various biological cells. The invention consists of a laser generation system, an external optical path system, a high precision imaging system and a software control system. The laser generation system includes two parallel branches, one branch consists of a lock mould knob and a femtosecond laser sequentially, and the other branch consists of a digital delay/pulse signal generator and a regeneration amplifier sequentially. The external optical path system consists of a dual-branch optical path, a semi-transparent semi-reflection mirror, an optical gate and a beam expander sequentially. The dual-branch optical path includes two parts: one part consists of a movable convex lens, a fixed convex lens, a rotatable total reflection mirror and an attenuation mirror sequentially, and the other part is an attenuation mirror. The device can realize the whole process of nano-injury and regeneration study of the nerve cells and can adopt the femtosecond optical tweezers to realize the choice of the super-sophisticated target position during an axon regeneration process.
Owner:JIANGSU UNIV

Laser amplifiers with high gain and small thermal aberrations

The present invention discloses a laser amplifier with high gain and low thermally induced optical aberrations on the amplified laser beam. The amplifier designs allow simple multipass configurations to optimally extract the gain and reduce thermally induced index of refraction aberrations, making it possible to obtain an amplified laser beam of high quality combined with very high overall gains comparable to those achievable with expensive regenerative amplifiers. The amplifier includes a thin active laser solid to create the population inversion and associated heat generation within the thin laser active solid possible for the desired gain value. The system includes a cooling device in thermal contact with the thin active laser solid to provide good heat transport and high reflectivity coatings at the wavelengths of the pump and laser wavelengths. The pump light sources are laser diodes tuned to the maximum absorption of the laser active material. The amplifier also includes an optical system to transport the pump light to the laser active solid in such a way as to further confine the absorption of light along the two orthogonal directions in the plane of the laser active solid in order to get high population inversion and consequently high gains possible.
Owner:WUHAN HUARAY PRECISION LASER CO LTD

Local area network computer system utilizing radiating transmission line

A radio frequency communication system utilizing a radiating transmission line for communicating data signals is disclosed. The data signals convey digital data to remotely located data devices, including computers, equipment control systems and digital video cameras. The data signals have a wide bandwidth of about 0.5 MHz to 32 MHz. In this way, the communication system creates a local area network by means of the radiating communication line. The communication system is intended to be used in environments where radio waves do not propagate well, such as in underground environments, and in particular mines. The communication system comprises at least one amplifier connected to the radiating transmission line for periodically amplifying the data signals by demodulating the data signals to recover the data contained therein and then modulating the recovered data into a regenerated radio frequency at a power level permitting transmission and radiation of the regenerated radio frequency data signal. The regeneration amplifiers comprise a processor for temporarily storing and performing error detection and correction functions on the recovered data. The regeneration amplifiers also comprise a device for tracking the data devices within the coverage area of the regeneration amplifier. Information regarding the data devices within the coverage area of each regeneration amplifier is sent to a system server of the communication system and the system server utilizes this information to account for delays caused by the regeneration amplifier. The communication system may support cable modem protocols such as DOCSIS.
Owner:MINE RADIO SYST +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products