Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4470 results about "Laser fiber" patented technology

A fiber laser or fibre laser is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and holmium. They are related to doped fiber amplifiers, which provide light amplification without lasing.

Single mode optical fiber

A large core photonic crystal fiber for transmitting radiation having a core comprising a substantially transparent core material and having a core diameter of at least 5 mu. The fiber also comprises a cladding region surrounding the length of core material, wherein the cladding region comprises a first substantially transparent cladding material, having a first refractive index, and wherein the first substantially transparent cladding material has embedded along its length a substantially periodic array of holes, wherein the holes are filled with a second cladding material having a second refractive index less than the first refractive index, such that radiation input to the optical fiber is transmitted along the length of the core material in a single mode of propagation. In a preferred embodiment, the core diameter may be at least 20 mu, and may be as large as 50 mu. The fiber is capable of transmitting higher power radiation than conventional fibres, whilst maintaining propagation in a single mode. The core material may be doped with a material capable of providing amplification under the action of pump radiation input to the fiber. The invention also relates to a fiber amplifier and a fiber laser comprising a doped large core photonic crystal fiber. The fiber may also be used in a system for transmitting radiation comprising a plurality of lengths of large core photonic crystal fiber, separated by large core photonic crystal fiber amplifiers, such that the power of radiation transmitted through the system is maintained above a predetermined threshold power.
Owner:NKT RES & INNOVATION

Optical spectroscopy apparatus and method for measurement of analyte concentrations or other such species in a specimen employing a semiconductor laser-pumped, small-cavity fiber laser

An optical spectroscopy apparatus determines the concentration of analyte in a specimen that utilizes a single radiation source which is hybrid laser comprising a semiconductor pump laser and small-cavity rare earth fiber laser where laser cavities of both lasers are butt coupled or otherwise optically coupled to form a plurality of laser cavities that produce a plurality of emission wavelengths, one which may be the pump laser emission wavelength at the output of the fiber laser thereby forming a multi-wavelength combined output where the wavelengths substantially match distinguishing spectral characteristic features along at least a portion of a characteristic optical spectrum of the analyte under examination. In lieu of complex data analysis of these wavelengths to determine values representing the concentration of the analyte in an examined specimen, the semiconductor pump laser or lasers are modulated as a plurality of tone frequencies, where at least a first of the modulation frequencies is below the maximum frequency response of the fiber laser so that the first modulation effectively modulates the pump emission wavelength and a first emission wavelength of the fiber laser in the hybrid laser combined output, and at least a second of modulation frequencies is above the maximum frequency response of the fiber laser so that the second modulation effectively modulates the pump emission wavelength but not the first emission wavelength of the fiber laser in the hybrid laser combined output. Further, one or more additional modulation frequencies may be applied to the pump laser which are intermediate of the first and second modulation frequencies where it is at least responsive to at least one further emission wavelength of the fiber laser and also provided in the hybrid laser combined output.
Owner:THORNTON ROBERT L

Orbital welding device for pipeline construction

The invention relates to an orbital welding device for mobile use in order to join a first pipe (1) and a second pipe end (2) along a circumferential joint (3) by at least one weld seam (4), particularly for producing a pipeline (5) to be placed on land. The inventive device includes a guide ring (6), which can be oriented toward the first pipe end (1) and the circumferential joint (3), and an orbital carriage (7) that can be motor-displaced along the guide ring (6) via an advancing device (8). On the orbital carriage (7), a laser welding head (12) for directing a laser beam (10) into a laser welding zone (13) is mounted in a manner that enables it to be oriented toward the circumferential joint (3) whereby enabling the production of the weld seam (4) along the circumferential joint (3) by displacing the orbital carriage (7). The laser beam (10) is produced by a high-power fiber laser beam source (9) located, in particular, on a mobile transport vehicle (35) while being situated at a distance from the orbital carriage (7), is guided by light guide (11) passing through a tube bundle (50) to the orbital carriage (7) and then supplied to the welding head (12). A significant advantage of the invention resides in the fact that the joining of two pipe ends by only one single welding process during a short period of time is made possible in the field with autonomous operation.
Owner:VIETZ

Mode-locked multi-mode fiber laser pulse source

A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity. To amplify and compress optical pulses in a multi-mode (MM) optical fiber, a single-mode is launched into the MM fiber by matching the modal profile of the fundamental mode of the MM fiber with a diffraction-limited optical mode at the launch end, The fundamental mode is preserved in the MM fiber by minimizing mode-coupling by using relatively short lengths of step-index MM fibers with a few hundred modes and by minimizing fiber perturbations. Doping is confined to the center of the fiber core to preferentially amplify the fundamental mode, to reduce amplified spontaneous emission and to allow gain-guiding of the fundamental mode. Gain-guiding allows for the design of systems with length-dependent and power-dependent diameters of the fundamental mode. To allow pumping with high-power laser diodes, a double-clad amplifier structure is employed. For applications in nonlinear pulse-compression, self phase modulation and dispersion in the optical fibers can be exploited. High-power optical pulses may be linearly compressed using bulk optics dispersive delay lines or by chirped fiber Bragg gratings written directly into the SM or MM optical fiber. High-power cw lasers operating in a single near-diffraction-limited mode may be constructed from MM fibers by incorporating effective mode-filters into the laser cavity. Regenerative fiber amplifiers may be constructed from MM fibers by careful control of the recirculating mode. Higher-power Q-switched fiber lasers may be constructed by exploiting the large energy stored in MM fiber amplifiers.
Owner:FERMANN MARTIN E +1

Optical fiber laser, and components for an optical fiber laser, having reduced susceptibility to catastrophic failure under high power operation

Optical fiber lasers and components for optical fiber laser. An optical fiber laser can comprise a fiber laser cavity having a wavelength of operation at which the cavity provides output light, the cavity including optical fiber that guides light having the wavelength of operation, the fiber having first and second lengths, the first length having a core having a V-number at the wavelength of operation and a numerical aperture, the second length having a core that is multimode at the wavelength of operation and that has a V-number that is greater than the V-number of the core of the first length optical fiber at the wavelength of operation and a numerical aperture that is less than the numerical aperture of the core of the first length of optical fiber. At least one of the lengths comprises an active material that can provide light having the wavelength of operation via stimulated emission responsive to the optical fiber receiving pump light. Components include a mode field adapter and optical fiber interconnection apparatus, which can be used to couple the first and second lengths of optical fiber, or can couple the fiber laser to an optical fiber power amplifier, which can be a multimode or single mode amplifier.
Owner:NUFERN

Anisotropic distributed feedback fiber laser sensor

The invention relates to a DFB fiber laser sensor (1). A measurement quantity makes it possible to induce a linear birefringence between mode pairs of the laser-amplifying fiber (2) and to measure an associated beat frequency (Δν1, Δν2, Δν3). According to the invention, the laser-amplifying fiber (2) has a nonrotationally symmetrical structure, so that it is possible to detect isotropic pressures p, acoustic waves or chemical substances that can be added radially to the laser-amplifying fiber (2). In a second aspect of the invention, an emission wavelength range and parameters (a, b, ΔN) of the laser-amplifying fiber (2) and also a grating period L of the fiber Bragg grating resonator (3) are coordinated with one another such that at least two different spatial modes (LP01, LP11even, LP11odd, LP21even) are propagatable and it is possible to measure beat frequencies (Δν1, Δν2, Δν3) between oscillatory longitudinal laser modes assigned to them. Exemplary embodiments relate to: rotationally asymmetrical fiber types, a choice of special spatial modes (LP11odd, LP21even) and/or multiple fiber Bragg gratings (3) for reducing the beat frequencies (Δν1, Δν2, Δν3) below 100 GHz; and elimination of temperature influences e.g. by the detection of a plurality of beat frequencies (Δνa, Δνb, Δνc, Δνd) between different pairs of spatial modes (LP01, LP11even, LP11odd, LP21even) and/or polarization modes (X, Y).
Owner:GE OIL & GAS UK LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products