Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

556 results about "Wavelength channels" patented technology

Tunable laser transmitter with internal wavelength grid generators

The present invention provides a continuously tunable external cavity laser (ECL) with a compact form factor and precise tuning to a selected center wavelength of a selected wavelength grid. The ECL may thus be utilized in telecom applications to generate the center wavelengths for any channel on the ITU or other optical grid. The ECL does not require a closed loop feedback. A novel tuning mechanism is disclosed which provides for electrical or mechanical tuning to a known position or electrical parameter, e.g., voltage, current or capacitance, with the required precision in the selected center wavelength arising as a result of a novel arrangement of a grid generator and a channel selector. The grid generator exhibits first pass bands which correspond to the spacing between individual channels of the selected wavelength grid and a finesse which suppresses side band modes of the laser. The channel selector exhibits second pass bands that are wider than the first pass bands. In an embodiment of the invention the second pass bands have a periodicity substantially corresponding with the separation between the shortest wavelength channel and the longest wavelength channel of the selected wavelength grid and a finesse which suppresses channels adjacent to the selected channel. The broad second pass bands of the channel selector reduce the sensitivity of the ECL to tuning variations about the selected channel, thus avoiding the requirement of a closed loop feedback system to control the channel selector.
Owner:NEWPORT CORP

Method and apparatus for monitoring optical signal-to-noise ratio

Optical signal-to-noise ratio (OSNR) monitoring methods and apparatus are described. A tunable optical filter filters an optical channel containing an optical signal and noise. The total signal and noise power at the output of the filter is measured as the transmittance passband of the filter is varied and the maximum and minimum powers are determined. The ratio between the maximum and minimum powers is then used to determine the OSNR of the optical channel, which, for example, can be a wavelength channel in a wavelength division multiplexing (WDM) system. The ratio of the maximum signal power to the minimum signal power and the ratio of the maximum noise power to the minimum noise power are pre-determined based on the signal modulation format type and filter passband characteristics. Because the OSNR monitoring method and apparatus rely on information obtained after spectrally filtering the signal and noise, their operation is independent of any transmission effect that does not affect the optical power spectra of the signal and the noise or affects them in a known manner. For example, effects such as chromatic dispersion (CD), polarization-mode dispersion (PMD), and changes in the signal degree of polarization (DOP) and noise DOP will not affect the OSNR reading thus obtained.
Owner:WSOU INVESTMENTS LLC +1

Large-effective-area inverse dispersion compensating fiber, and a transmission line incorporating the same

An inverse dispersion fiber having a large effective area and a transmission system that incorporates the fiber for providing dispersion and dispersion slope compensation in a transmission fiber. The large-effective-area inverse dispersion optical fiber (IDF) has a negative dispersion and a negative dispersion slope. The effective area, Aeff, of the IDF preferably is greater than approximately 31 micrometers squared (μm2) at a transmission wavelength of approximately 1550 nm. The large-effective-area IDF is suitable for use with super-large-effective-area (SLA) transmission fiber for compensating dispersion in the SLA transmission fiber while reducing nonlinear effects between wavelength channels and cabling loss, which is especially advantageous in transoceanic and long-haul terrestrial systems. These nonlinear effects are inversely related to the effective area of the fiber (i.e., nonlinearities˜1/Aeff). Thus, an increase in the effective area of the fiber translates into a decrease in nonlinear interactions, which increases bandwidth capabilities and limits signal degradation. Furthermore, the large-effective-area IDF of the present invention has very desirable transmission properties. The present invention also provides a transmission system comprising at least one of the large-effective-area IDF optical fibers of the present invention. Furthermore, Aeff can be made large without having to increase the ratio, Ra, of the diameter of the core to the diameter of the trench region.
Owner:FURAKAWA ELECTRIC NORTH AMERICA INC

Waveguide grating-based wavelength selective switch actuated by micro-electromechanical system

The present invention is a wavelength-selective optical switching system. The switching system includes an input waveguide designated as waveguide WG(0) for receiving a multiplexed optical signal comprising optical signals transmitted over a plurality of wavelength channels represented by λ1, λ2, λ3, , λN, where N is a positive integer wherein the input waveguide extending over a first direction. The switching system further includes a two dimensional waveguide array comprising a plurality of first direction waveguides WG(i), i=1, 2, 3, , M extending over the first direction substantially parallel to the input waveguide WG(0) where M is a positive integer and a plurality of second direction waveguides WG′(j), j=1, 2, 3, N, extending over a second direction substantially perpendicular to the first direction and intersecting with the input waveguide and each of the first direction waveguide WG(i), i=0, 1, 2, 3, ,M, thus forming (M+1)×N intersections. The switching system further includes a plurality of wavelength selective grating-based switches SW(i, j) where i=0, 1, 2, 3, , M and j=1, 2, 3, , N, each disposed on one of the (M+1)×N intersections for selectively transmitting an optical signal of wavelength λj into a waveguide WG′(j) and for selectively transmitting an optical signal of a predefined combination of wavelengths into at least one of the waveguide WG(i) for i=1, 2, 3, M.
Owner:OPLUN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products