Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

462 results about "Spontaneous emission" patented technology

Spontaneous emission is the process in which a quantum mechanical system (such as an atom, molecule or subatomic particle) transitions from an excited energy state to a lower energy state (e.g., its ground state) and emits a quantised amount of energy in the form of a photon. Spontaneous emission is ultimately responsible for most of the light we see all around us; it is so ubiquitous that there are many names given to what is essentially the same process. If atoms (or molecules) are excited by some means other than heating, the spontaneous emission is called luminescence. For example, fireflies are luminescent. And there are different forms of luminescence depending on how excited atoms are produced (electroluminescence, chemiluminescence etc.). If the excitation is affected by the absorption of radiation the spontaneous emission is called fluorescence. Sometimes molecules have a metastable level and continue to fluoresce long after the exciting radiation is turned off; this is called phosphorescence. Figurines that glow in the dark are phosphorescent. Lasers start via spontaneous emission, then during continuous operation work by stimulated emission.

Mode-locked multi-mode fiber laser pulse source

A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity. To amplify and compress optical pulses in a multi-mode (MM) optical fiber, a single-mode is launched into the MM fiber by matching the modal profile of the fundamental mode of the MM fiber with a diffraction-limited optical mode at the launch end, The fundamental mode is preserved in the MM fiber by minimizing mode-coupling by using relatively short lengths of step-index MM fibers with a few hundred modes and by minimizing fiber perturbations. Doping is confined to the center of the fiber core to preferentially amplify the fundamental mode, to reduce amplified spontaneous emission and to allow gain-guiding of the fundamental mode. Gain-guiding allows for the design of systems with length-dependent and power-dependent diameters of the fundamental mode. To allow pumping with high-power laser diodes, a double-clad amplifier structure is employed. For applications in nonlinear pulse-compression, self phase modulation and dispersion in the optical fibers can be exploited. High-power optical pulses may be linearly compressed using bulk optics dispersive delay lines or by chirped fiber Bragg gratings written directly into the SM or MM optical fiber. High-power cw lasers operating in a single near-diffraction-limited mode may be constructed from MM fibers by incorporating effective mode-filters into the laser cavity. Regenerative fiber amplifiers may be constructed from MM fibers by careful control of the recirculating mode. Higher-power Q-switched fiber lasers may be constructed by exploiting the large energy stored in MM fiber amplifiers.
Owner:FERMANN MARTIN E +1

Multi-wavelength light source-based Brillouin optical time domain reflectometer

The invention discloses a multi-wavelength light source-based Brillouin optical time domain reflectometer which comprises a multi-wavelength laser, a coupler, an electrooptical modulator, an erbium-doped optical fiber amplifier, an optical filter, a circulator, a double-balanced detector and a signal acquiring and processing system, wherein continuous light of the multi-wavelength laser is divided into two paths, wherein one path is modulated into pulse light through the electrooptical modulator and the other path is modulated to obtain continuous light of a local oscillator through an electrooptical modulator sideband. Multi-wavelength detection pulse light is amplified by the erbium-doped optical fiber amplifier, subjected to spontaneous emission noise filtration by the optical filter and is injected into a sensing optical fiber by the circulator. Stokes Brillouin back scattering light in the sensing optical fiber is coherent with local oscillator light through the circulator, is subjected to photovoltaic conversion through the double-balanced detector and then is fed into the signal acquiring and processing system to obtain a Brillouin scattering spectrum on the whole optical fiber and further obtain the temperature and strain distribution on the optical fiber.
Owner:NANJING UNIVERSTIY SUZHOU HIGH TECH INST +1

Active Optical Fibers With Wavelength-Selective Filtering Mechanism, Method of Production and Their Use

The invention relates to optical fibers for use in optical amplification of light, such as in optical fiber amplifiers and lasers and for use in delivery of high power light, in particular to a scheme for reducing amplified spontaneous emission at undesired wavelengths. The invention further relates to articles, methods and use. An object of the invention is achieved by a micro-structured optical fiber, which is adapted to guide light by the photonic bandgap effect and to have one or more pass bands and at least one stop-band over a wavelength range from λstop1 to λstop2. In an aspect of the invention, the at least one stop-band provides filter functions that suppress nonlinear effects. In another aspect, the core region is actively doped, and the active material has an emission spectrum with a higher value of the emission cross section σE at a wavelength λASE between λstop1 and λstop2 than outside said wavelength range such that amplified spontaneous emission and lasing within the wavelength range from λstop1 to λstop2 is reduced. In still another aspect, the optical fiber exhibits photonic bandgaps at different wavelength ranges in different radial directions of a cross section of the optical fiber.
Owner:NKT PHOTONICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products