Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

759 results about "Optical time-domain reflectometer" patented technology

An optical time-domain reflectometer (OTDR) is an optoelectronic instrument used to characterize an optical fiber. An OTDR is the optical equivalent of an electronic time domain reflectometer. It injects a series of optical pulses into the fiber under test and extracts, from the same end of the fiber, light that is scattered (Rayleigh backscatter) or reflected back from points along the fiber. The scattered or reflected light that is gathered back is used to characterize the optical fiber. This is equivalent to the way that an electronic time-domain meter measures reflections caused by changes in the impedance of the cable under test. The strength of the return pulses is measured and integrated as a function of time, and plotted as a function of fiber length.

BOTDR (Brillouin Optical Time Domain Reflectometer) for calibrating optical power of reference light and calibrating method thereof

The invention relates to a BOTDR (Brillouin Optical Time Domain Reflectometer) for calibrating optical power of reference light and a calibrating method thereof. The calibrating method comprises the following steps of: acquiring an electric signal of local reference light from a heterodyne photoreceiver on a basis of a traditional BOTDR for heterodyne coherent detection; transmitting the electric signal subjected to analog-to-digital conversion in a computer to be used as the optical power calibrating feedback quantity of the reference light; sending out an instruction by the computer to adjust the output power of a microwave source and change the optical power of the local reference light so that the difference between the optical power of the local reference light and the preset reference light power is smaller than a set value; calibrating the power; and detecting a BOTD signal. In the invention, the BOTDR in a working process can not be influenced by the working environment temperature, a microwave transmission line connecting the microwave source with an electro-optic modulator and different power responses of the electro-optic modulator on microwave signals of different frequencies, the error between the reference light power at different frequency points and the preset power is smaller than a set value, and the accurate measurement of the stress and the temperature is ensured.
Owner:NANJING UNIV

Multi-point localizable distribution-type optical-fiber vibration sensor based on polarization-state differential detection

The invention discloses a distribution-type optical-fiber vibration sensor which is based on polarization-state differential detection and can localize multiple points of vibration sources, and the sensor is characterized in that on the basis of the traditional optical time domain reflectometer, a polarization beam splitter is used for detecting a polarization state of backward scattered light in sensing optical fibers, two beams of orthogonal polarization light which is outputted by the polarization beam splitter are respectively photoelectrically converted by two photoelectric detectors, then differential operation and amplification processing is conducted for two detected signals, the signals are sampled by an analog/digital (A/D) converter, and the sample is sent into an embedded computer to be data analyzed and computed so as to realize the precise localization of the vibration sources which are distributed along the axial direction of the optical fibers. Due to adopting the multi-point localizable distribution-type optical-fiber vibration sensor, the simultaneous localization of multi-point weak vibration sources which are distributed along the axial direction of the optical fibers can be realized. The multi-point localizable distribution-type optical-fiber vibration sensor is simple and reliable, easy to implement and maintain and suitable for the detection and precise localization of the weak vibration signal sensed by the long-distance laid optical fibers.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Method for simultaneously measuring distributed type temperatures and strain

The invention provides a method for simultaneously measuring distributed type temperatures and strain. A brillouin optical time domain reflectometer and a coherent light time domain reflectometer share the same optical path system and the same circuit system and serve as a sensing measurement system. The sensing measurement system works in a BOTDR mode and a COTDR mode in an alternate mode to measure a brillouin scattering spectrum and a Rayleigh scattering spectrum which are distributed along a single single-mode sensing optical fiber and detect the frequency shift of the brillouin scattering spectrum and the frequency shift of the Rayleigh scattering spectrum, a linear equation set in two unknowns about the temperature and the strain is set up according to the characteristic that the frequency shift of the two scattering spectra is in the linear relationship with the temperature and the strain, and the temperature and the strain of each position of the sensing optical fiber can be obtained by solving the equation set, and then the temperatures and the strain distributed along the whole sensing optical fiber can be obtained. According to the method, the complexity and the manufacturing cost of the system are greatly reduced, no special requirement for the brillouin frequency shift coefficient of the optical fiber exists, and the application range of the measurement system is enlarged.
Owner:NORTH CHINA ELECTRIC POWER UNIV (BAODING)

Centralized monitoring and managing system for optical cable resources

The invention relates to a centralized monitoring and managing system for optical cable resources. A system structure based on two stages of monitoring and managing platforms and a layer of monitoring and operating platform is at least regulated and controlled by the two stages of monitoring centers of a province and city stage and a region stage, and the monitoring of various modes of optical time domain reflectometer (OTDR) test, light power test, linking test thereof and the like is also provided to an optical fiber in use or a standby fiber in an optical fiber network at an executing lay by a plurality of monitoring stations correspondingly. The system also provides an abundant system managing function; especially, a resource topology drawing of an entire network can be drawn according to the configuration parameter of the system; and the operation of quick and accurate positioning during maintenance and fault examination is assisted by utilizing a geographic information system (GIS) technology. Therefore, according to the system disclosed by the invention, the expense of manpower and financial resources for maintenance and management can be effectively reduced, and the time of fault diagnosis and treatment is effectively shortened, so that the safe and stable running of the entire network is ensured.
Owner:SHANGHAI MUNICIPAL ELECTRIC POWER CO +1

Optical time domain reflectometer simultaneously sensing temperature and stress

InactiveCN104180833AReduce the impact of noiseReduce the scattered light signal-to-noise ratioConverting sensor output opticallyFiberData acquisition
Disclosed is an optical time domain reflectometer simultaneously sensing temperature and stress. The system is based on parallel detection of Rayleigh and Brillouin scattered light and includes devices such as a multi-wavelength laser source, a light-pulse modulator, a balance detector, a microwave amplifier, a high-speed data acquisition card, a coupler and a circulator and the like. In the optical time domain reflectometer, the frequency interval of wavelengths of the multi-wavelength laser source is arranged to be in a range of 9-12 GHz, which is equivalent to a frequency shift quantity of Brillouin scattered light in a fiber. A heterodyne coherent detection method is used to carry out parallel detection on Rayleigh and Brillouin scattered spectra and temperature and stress information is demodulated through a Landau-Placzek ratio (LPR) and Brillouin frequency shift distribution; and at the same time, coherent Rayleigh noises are reduced and superposition of the scattered spectra improves the signal-to-noise ratio of the scattered light. The optical time domain reflectometer is capable of realizing simultaneous temperature and stress sensing of a distributed fiber sensing system, improving the signal-to-noise ratio of the scattered light and improving the sensing precision and distance.
Owner:SHANGHAI INST OF OPTICS & FINE MECHANICS CHINESE ACAD OF SCI

Method for automatically monitoring and maintaining optical cable

The invention discloses a method for automatically monitoring and maintaining an optical cable. The method comprises the following steps of: automatically monitoring the power of the optical cable by a power meter and giving an alarm; when the power of the optical cable is alarmed, determining the alarm level of the optical power, and driving an optical time domain reflectometer module to test the optical cable; automatically analyzing whether the optical cable is broken and determining the breakpoint distance according to a test result; automatically calculating the geographical position of the breakpoint through optical cable facility information; automatically transmitting a short message to the mobile phone of an optical cable maintainer; and making an emergency maintenance by the maintainer or a manager. The invention is characterized in that: the method replaces the traditional polling mode so as to reduce the electric consumption, greatly improve the cruising capability of a handheld intelligent terminal, and improve the availability of the whole system; the optical cable is not required to be communicated with a server frequently so as to greatly save a general packet radio service (GRPS) flow; and when the optical cable is out of service, the server immediately transmits the message to the handheld intelligent terminal; and compared with the polling mode, the method has higher real time.
Owner:GUANGXUN SCI & TECH WUHAN +1

Method for precisely positioning fault of optical cable by utilizing rayleigh scattering and coherent optical time domain reflection technology

The invention discloses a method for precisely positioning a fault of an optical cable by utilizing rayleigh scattering and coherent optical time domain reflection technology. The method comprises the following steps of utilizing the coherent optical time domain reflection and rayleigh scattering technology, wherein rayleigh scattered light carries each distributed point information of the optical cable according to the optical time domain reflection principle, and the distributed point information of the optical cable comprises strength information caused by loss and phase information of an interferometer based on Sagnac ring principle caused by external disturbance; testing the positioning of the optical cable by combining an ultrasonic vibrator with a Rayleigh scattered optical time domain reflectometer, finding out the position of a vibration point, re-utilizing a method of combining absolute positioning with relative positioning, and carrying out successive approximation to finally realize precise positioning of the optical cable. Compared with the prior art, the method for precisely positioning the fault of the optical cable by utilizing the rayleigh scattering and coherent optical time domain reflection technology, disclosed by the invention, has the advantages of simplicity in operation, small calculated amount, shortened time for finding out a fault point and reduced maintenance cost.
Owner:GUILIN G LINK TECH

Wavelength-encoding optical time domain reflection test device and measurement method thereof

The invention discloses a wavelength-encoding optical time domain reflection test device and a measurement method thereof. The device comprises an optical wavelength encoding generator, an optical fiber splitting device, a polarization controller, an optical fiber coupler, a photoelectric detector and a beat frequency signal detection device; wherein an encoding optical pulse signal generated from the optical wavelength encoding generator is input from a first port of the optical fiber splitting device and divided into a detection light signal and a reference light signal which are respectively output from a second port and a third port of the optical fiber splitting device; the detection light source enters into an optical fiber link to be tested, and a reflected light signal generated after meeting breakpoints or damages of the optical fiber link to be tested returns to the optical fiber splitting device from the second port and is output from a fourth port; the reflected light signal passes through the polarization controller, then passes through the optical fiber coupler together with the reference light signal and enters into the photoelectric detector to carry out frequency beating, and a beat-frequency low-frequency signal enters into the beat-frequency signal detection device and is then observed and recorded. The invention solves the problems that the OTDR resolution ratio and the dynamic range of the traditional device can not be simultaneously improved.
Owner:INST OF SEMICONDUCTORS - CHINESE ACAD OF SCI

Phase-sensitive optical time domain reflectometer type optical fiber distributed disturbing sensor of double-arm pulse optical interference

The invention relates to the technical field of the optical fiber sensor, providing a phase-sensitive optical time domain reflectometer type optical fiber distributed disturbing sensor of double-arm pulse optical interference. By adopting a laser that is narrow in line width, large in power and low in frequency drift, the phase-sensitive optical time domain reflectometer type optical fiber distributed disturbing sensor of double-arm pulse optical interference provided by the invention based on the phase-sensitive optical time domain reflection technology can position the disturbing signals in a single point or multiple points simultaneously through interference of backward Rayleigh scattering light in two sensing arms pulse width areas by comparing the signals after and before disturbance. By extracting the phase information in a trigonometric function for large numbers accumulation or average, the invention improves the sensitivity of the system equivalently. The invention improves the sensitivity of the system by way of square or exponentiation. Finally, optimally, PGC (phase generated carrier) algorithm is used to extract the phase information so as to eliminate the influence of random change of scattered signals, thereby improving the sensitivity of the system equivalently.
Owner:BEIHANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products