Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

373results about How to "Increase optical power" patented technology

Method and apparatus for using an array of grating light valves to produce multicolor optical images

A multicolor optical image-generating device comprised of an array of grating light valves (GLVs) organized to form light-modulating pixel units for spatially modulating incident rays of light. The pixel units are comprised of three subpixel components each including a plurality of elongated, equally spaced apart reflective grating elements arranged parallel to each other with their light-reflective surfaces also parallel to each other. Each subpixel component includes means for supporting the grating elements in relation to one another, and means for moving alternate elements relative to the other elements and between a first configuration wherein the component acts to reflect incident rays of light as a plane mirror, and a second configuration wherein the component diffracts the incident rays of light as they are reflected from the grating elements. The three subpixel components of each pixel unit are designed such that when red, green and blue light sources are trained on the array, colored light diffracted by particular subpixel components operating in the second configuration will be directed through a viewing aperture, and light simply reflected from particular subpixel components operating in the first configuration will not be directed through the viewing aperture.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Optical fiber distributed disturbance sensor

The invention discloses an optical fiber distributed disturbance sensor which comprises an optical fiber laser, a bidirectional distributed Raman amplification unit and a photoelectric detection and signal processing unit, wherein an output end of the optical fiber laser is connected with a first coupler; two output ends of the first coupler are respectively connected with an acoustic optical modulator and a third coupler; the bidirectional distributed Raman amplification unit is connected with the acoustic optical modulator by a first circulator and is connected with the third coupler by the first circulator; the photoelectric detection and signal processing unit is connected with the third coupler and used for receiving an interference-enhanced optical signal in the third coupler, converting the optical signal into an electric signal and carrying out subsequent data processing. In the optical fiber distributed disturbance sensor, the back scattering light intensity and the signal-to-noise ratio of the tail end of the optical fiber can be improved by the bidirectional distributed Raman amplification structure so as to improve the sensing distance of the optical fiber distributed disturbance sensor; and the light power received by a detector can be improved through the interference of a part of continuous light output by a light source and the back scattering light, so as to improve the signal-to-noise ratio of the system. The sensor is a combination of conventional photoelectric devices, has a simple structure and is easy to realize.
Owner:BEIHANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products