Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

392 results about "Acoustic resonance" patented technology

Acoustic resonance is a phenomenon in which an acoustic system amplifies sound waves whose frequency matches one of its own natural frequencies of vibration (its resonance frequencies). The term "acoustic resonance" is sometimes used to narrow mechanical resonance to the frequency range of human hearing, but since acoustics is defined in general terms concerning vibrational waves in matter, acoustic resonance can occur at frequencies outside the range of human hearing.

Low frequency electronic ballast for gas discharge lamps

An electronic ballast for high intensity gas discharge lamps where the wave form of the lamp current is square wave providing acoustic resonance and flickering free operation. The circuit, having high efficiency, operates in a wide temperature range providing ideal ballast curve and reliable ignition for the lamps. Furthermore, significant energy saving can be achieved by its externally controlled built in dimming capability.
Owner:BALLASTRONIC

Driving circuit for high intensity discharge lamp electronic ballast

A circuit arrangement and control thereof for igniting a high intensity discharge (HID) lamp, for reducing the high frequency ripple superimposed on the low frequency rectangular waveform lamp current after ignition, and for increased circuit efficiency. The high frequency ignition voltage is only applied to the lamp during ignition phase and is mainly generated by the second stage of the low pass (LP) filter. The first stage of the LP filter whose resonant frequency is below the second stage further attenuates the high frequency ripple current through the lamp in normal operation. The resulting lamp current is a low frequency rectangular wave with less than 10% high frequency ripple. Acoustic resonance is avoided. The inductor in the first stage of LP filter is operated in discontinuous current mode. Doing so, the active switches are in zero current switching (ZCS) to maximize the circuit efficiency.
Owner:MATSUSHITA ELECTRIC WORKS LTD

Method of drop size modulation with extended transition time waveform

The present invention uses a novel waveform to allow the droplet volume dispensed from a demand mode inkjet type device to be increased and selected according to easily controllable parameters. The current invention departs from the conventional drive method by significantly increasing the time for energy input in the initial instance as well is in all later application of the drive voltage to the device. In shape, the waveform is the same whether a unipolar or bipolar pulse is utilized; however, the transition times in the initial instance are up to three times the acoustic resonance and the delay times are of the same order. Droplet diameter can be varied from 1X the orifice diameter to 2X the orifice diameter resulting in an 8:1 range of droplet volume. Since the volume modulation results from changes in the waveform used to drive the solder jet device, the drop volume can be changed and altered in real time.
Owner:MICROFAB TECH

System and method for gas analysis using doubly resonant photoacoustic spectroscopy

A method for analyzing gas concentration using doubly resonant photoacoustic spectroscopy, and a doubly resonant photaoacoustic gas detector comprising: i) a continuous wave light beam whose wavelength coincides with an absorption wavelength of a gaseous analyte; ii) a closed path optical cavity having at least two reflective surfaces; iii) an acoustic resonator chamber contained within said optical cavity, and comprising an acoustic sensor for detecting sound waves generated by a gaseous analyte present within said chamber, the light beam passing sequentially into, through and out of said chamber, and being repeatedly reflected back and forth through said chamber, and being modulated at a frequency which is equal to or equal to one-half of an acoustic resonance frequency of said acoustic resonator chamber.
Owner:LI COR

Reduction of vertical segregation in a discharge lamp

An apparatus for reducing vertical segregation of a discharge lamp. A current / voltage input sweeps through a frequency range between the first azimuthal acoustic resonance mode and a first radial acoustic resonance mode of the discharge lamp. The current / voltage input is subsequently amplitude modulated. Alternatively, without amplitude modulation, the current / voltage input sweeps through the frequency range for a first portion of the period, and then for a second portion of the period drops to a relatively constant frequency.
Owner:PHILIPS ELECTRONICS NORTH AMERICA

Speaker arrangement for communication terminal

A communication terminal includes a housing carrying therein a radio antenna element, a speaker, and a chamber that acts as an electromagnetic resonance cavity for the antenna and as an acoustic resonance cavity for the speaker. The speaker is mounted inside the chamber and is coupled to the outside of the housing through a sound channel. The terminal includes a user interface on a front side of the housing and the speaker is placed behind the user interface as viewed from the front side, with the sound channel extending from a channel inlet at the speaker to a channel front outlet at the front side.
Owner:SONY ERICSSON MOBILE COMM AB

System and method for gas analysis using doubly resonant photoacoustic spectroscopy

A method for analyzing gas concentration using doubly resonant photoacoustic spectroscopy, and a doubly resonant photaoacoustic gas detector comprising:i) a continuous wave light beam whose wavelength coincides with an absorption wavelength of a gaseous analyte;ii) a closed path optical cavity having at least two reflective surfaces;iii) an acoustic resonator chamber contained within said optical cavity, and comprising an acoustic sensor for detecting sound waves generated by a gaseous analyte present within said chamber, the light beam passing sequentially into, through and out of said chamber, and being repeatedly reflected back and forth through said chamber, and being modulated at a frequency which is equal to or equal to one-half of an acoustic resonance frequency of said acoustic resonator chamber.
Owner:LI COR

Acoustic resonance device

An acoustic resonance device is installed in a compartment of a vehicle so as to reduce a low-frequency sound pressure (or noise) dependent upon a natural vibration. Specifically, an acoustic resonance device is a panel / diaphragm resonator, a resonance pipe, or a Helmholtz resonator, the inner space of which communicates with the compartment via an opening. The acoustic resonance device is positioned in proximity to an antinode of sound pressure owing to a natural vibration occurring in a driver / passenger space inside the compartment. Alternatively, the acoustic resonance device increases a particle velocity at a specific natural frequency or decreases sound pressure at an excitation frequency which occurs due to an external condition of the vehicle. The acoustic resonance device can be installed in a roof, a seat, a pillar supporting the roof, or a door of a vehicle.
Owner:YAMAHA CORP

Microfluidic chip and cell screening method for screening specific cells

ActiveCN104195028ATo achieve the purpose of screening specificityCell dissociation methodsBioreactor/fermenter combinationsScreening methodAcoustic wave
The invention discloses a microfluidic chip and a cell screening method for screening specific cells. The chip comprises a substrate, a cavity and an acoustic excitation source, wherein the cavity comprises a middle channel, an inlet and an outlet; the acoustic excitation source is positioned on the substrate and at two sides of the middle channel and comprises two parts which extend to a direction of the outlet along the middle channel, wherein the corresponding acoustic resonance frequency of the second part close to the outlet is integer multiples of the corresponding acoustic resonance frequency of the first part far away from the outlet. Based on an acoustic streaming effect formed by targeted microbubbles and asymmetric sound fields, the microbubbles are adhered to the surfaces of the specific cells, so that the enriched cells which flow past the first part can still move in a straight line and cannot diffuse due to a laminar flow characteristic of microfluidics, and the specific cells bonded with the targeted microbubbles can shift because the acoustic resonance frequency of the second part is different from that of the first part. Thus, the screening of the specificity of the specific cells in blood is realized.
Owner:广州康臣药业有限公司

Multi-chamber noise control system

A noise control system is operable within a box-like structure provided by the dual bulkhead plenum of the vehicle dashboard positioned within the transfer path along which the noise is being transmitted from the source of the generated noise to the receiver of the noise in the passenger compartment of an automobile. The plenum is divided into discrete chambers into each of which is provided a counter noise generating apparatus to create a counteracting noise offsetting the noise generated at the source. The acoustic resonance of the chambers amplifies the noise control energy. The geometry of the individual chambers can be varied to optimize the packaging and sound control or shaping strategy. The sound energy permitted to pass through the plenum to the driver's side of the passenger compartment can be tuned to be different than the noise received in the passenger's side.
Owner:FORD GLOBAL TECH LLC

Acoustic resonance phase locked photoacoustic spectrometer

A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell to generate a photoacoustic signal, the acoustic source having a source frequency; continuously measuring detection phase of the photoacoustic signal with respect to source frequency or a harmonic thereof; and employing the measured detection phase to provide magnitude and direction for correcting the source frequency to the resonance frequency.
Owner:SOUTHWEST SCI

Apparatus and method of encoding/decoding an audio signal

An apparatus and method of encoding an audio signal and an apparatus and method of decoding an audio signal. The audio decoding method includes: generating an audio signal by decoding an input signal, and transforming an original waveform of the generated audio signal into a compensation waveform that is compensated for an acoustic resonance effect in the audio signal. Therefore, an audio signal having excellent sound quality without an amplified middle band can be heard via earphones, headphones, or a phone earpiece by using an inverse compensation waveform to compensate an ERP-DRP resonance effect, which is an acoustic resonance effect generated due to the structure of the human ear.
Owner:SAMSUNG ELECTRONICS CO LTD

Speaker arrangement for communication terminal

InactiveUS7233678B2Good resonance chamberAffect antenna performanceLoudspeaker transducer fixingAntenna supports/mountingsEngineeringComputer terminal
A communication terminal includes a housing carrying therein a radio antenna element, a speaker, and a chamber that acts as an electromagnetic resonance cavity for the antenna and as an acoustic resonance cavity for the speaker. The speaker is mounted inside the chamber and is coupled to the outside of the housing through a sound channel. The terminal includes a user interface on a front side of the housing and the speaker is placed behind the user interface as viewed from the front side, with the sound channel extending from a channel inlet at the speaker to a channel front outlet at the front side.
Owner:SONY ERICSSON MOBILE COMM AB

Headset device

A headset device comprising first and second headphones interconnected through a headband, wherein each of the first and second headphones comprises an earcup defining a unitary acoustic resonance chamber, a foraminous driver mount positioned offset from both a lateral axis and a longitudinal axis defined by the earcup, and a diaphragm retention ring extending from a surface of the foraminous driver mount. Each of the headphones further comprises a driver mounted within the driver mount and including a diaphragm, a foraminous unitary diaphragm support for maintaining the driver within the driver mount, an earcup cover attached to the earcup, and an earpad attached to the earcup.
Owner:OUTSIDE THE BOX

Structure around a speaker unit and applied electric or electronic apparatus thereof

A compact lightweight speaker system without a resonance box that can reproduce the original sound with high fidelity. A speaker unit is located on a baffle board with a vibration absorbing member between a frame of the speaker unit and the baffle board. Furthermore, an acoustic resonance reflecting board of a vertical flat board type based on the operating principle of a passive radiator is formed by the baffle board and a flat board being similar to the baffle board. As a result, a compact smart design will be produced. It is applicable to an electric or electronic apparatus which produces sound.
Owner:SHIMA SYST

Thermally driven pulse tube refrigerator system

The invention discloses a thermally driven pulse tube refrigerator system which comprises one or two free piston stirling engines, one or two pulse tube refrigerators and one or two acoustic resonance tubes, wherein each acoustic resonance tube is a first-class diameter or variable diameter pipe; each free piston stirling engine and each pulse tube refrigerator are respectively connected to two sides of each acoustic resonance tube; acoustic power generated by the free piston stirling engines is transmitted to the pulse tube refrigerators through the acoustic resonance tubes; the pulse tube refrigerators generate the refrigerating effect; the acoustic resonance tubes not only can play an acoustic power transmission role, but also can play an acoustic field phase modulation role; the acoustic fields in thermo-acoustic and acoustic-cold conversion core components, namely refrigerator regenerators, of the thermally driven pulse tube refrigerator are traveling wave phases; the thermal efficiency is high; meanwhile, no mechanical motion component is arranged in the pulse tube refrigerator; the thermally driven pulse tube refrigerator system has low vibration and high reliability; the refrigerating capacity from hectowatts to kilowatts or even higher can be obtained within a temperature region of 60-150K.
Owner:TECHNICAL INST OF PHYSICS & CHEMISTRY - CHINESE ACAD OF SCI

Capacitors adapted for acoustic resonance cancellation

An embodiment of the present invention provides a device, comprising a multilayered tunable dielectric capacitor, wherein said multilayers of tunable dielectric are adapted to be DC biased to reduce the dielectric constant; and wherein the DC bias is arranged so that the number of layers of tunable dielectric biased positively is equal to the number of layers of tunable dielectric biased negatively.
Owner:NXP USA INC

Flush inlet scoop design for aircraft bleed air system

A bleed air duct that preferably includes an inlet section configured to include a flush scoop and a louver. The louver is located and configured such that in the desired operating flow range of the duct, the fluid entering the flush scoop is disturbed and as a result creates a low pressure region downstream of the louver. The low pressure region substantially eliminates the generation of any pressure pulses and acoustic resonance also known as Helmholtz resonance.
Owner:HONEYWELL INT INC

Acoustic resonance based urea quality sensor

A urea quality sensor includes an acoustic resonator in order to measure the accurate concentration of urea by measuring change in molecular weight. A change in molecular weight of urea proportionately affects the speed of sound. The change in the composition of the urea solution manifests itself as a change in frequency. The concentration of the urea solution can be determined based on the frequency data obtained as a result of the frequency measurement utilizing the acoustic wave sensor. The urea quality sensor can be used with an NH3 sensor in order to identify that the solution is urea.
Owner:HONEYWELL INT INC

Web tension brake Anti-squeal improvement

An apparatus and method for reducing brake squeal in a web tension brake. The apparatus comprising an anti-squeal friction pad assembly having a friction pad mounted on a back plate and a rubber isolation layer sandwiched between the back plate and a second back plate. The rubber isolation layer to dampen vibrations and break up the symmetry of the brake assembly minimizing acoustic resonances that cause the objectionable squeal.
Owner:DOVER FLEXO ELECTRONICS

Generator collecting acoustic energy and sound sensor

The invention provides a generator capable of collecting acoustic energy, which combines a Helmholtz acoustic resonance cavity and a triboelectric nanometer generating component. The triboelectric nanometer generating component with thin membrane structures is arranged on the outer wall or at the opening position of the Helmholtz acoustic resonance cavity. Sound passes through the acoustic resonance cavity to allow an electrode layer and a frictional layer of the triboelectric nanometer generating component to mutually contact and separate and to generate electric energy on two electrode layers. The generator does not need to be provided with a vibrating membrane, and can reduce unnecessary acoustic energy loss, and efficiently convert sound energy into electric energy; the generate can be used as a sound sensor which does not need a power supply, and is a self-driven passive sound sensor.
Owner:BEIJING INST OF NANOENERGY & NANOSYST

Microphone environmental protection device

A device for protecting a microphone sensing surface, such as a diaphragm, from the detrimental effects of the ambient environment. The device incorporates a perforated surface to protect the microphone and in conjunction with a chamber volume creates an acoustic resonance in the 1 kHz to 20 kHz spectrum, which improves the microphone signal-to-noise ratio performance. The microphone is acoustically coupled to the chamber volume for sensing pressure of the ambient environment. There is no line of sight to the microphone sensing surface from the ambient environment, so that rain, wind and sand have no direct path to the microphone sensing surface. The perforations of the outer surface are small to prevent objects from contacting the microphone sensing surface via a direct path. Water drains from the chamber volume and does not become trapped if an embodiment of the invention is temporarily submerged so that the microphone returns to normal operation quickly.
Owner:RED TAIL HAWK CORP

Acoustic resonance type thermally-driven travelling wave thermo-acoustic refrigerating system

ActiveCN103808063AReduce irreversible heat lossIncrease profitRefrigeration machinesPower flowThermoacoustics
The invention relates to an acoustic resonance type thermally-driven travelling wave thermo-acoustic refrigerating system. The acoustic resonance type thermally-driven travelling wave thermo-acoustic refrigerating system is composed of N elastic films and N thermo-acoustic units, wherein the thermo-acoustic units are connected end to end through resonance tubes and form an annular loop, N is a positive integer ranging from 3 to 10, and the phase difference of volume flow rates of the two ends of each thermo-acoustic unit is 360 degrees / N. Each thermo-acoustic unit is composed of a thermo-acoustic engine and a pulse tube refrigeration machine. No movable parts are arranged in the refrigerating system, and reliability of the refrigerating system is further improved. Pure travelling wave phase positions can be obtained in an acoustic resonance loop system, acoustic power flowing out of each thermo-acoustic unit through the corresponding pulse tube refrigeration machine is recycled by the next thermo-acoustic unit, and therefore work efficiency of the system can be further improved. In addition, different numbers of thermo-acoustic units can be connected in series according to the required cooling capacity condition so that large-cooling-capacity output can be achieved. The acoustic resonance type thermally-driven travelling wave thermo-acoustic refrigerating system is large in cooling capacity, high in efficiency, long in service life and simple in structure, and has good application prospects in places where the requirements for cooling capacity are high.
Owner:TECHNICAL INST OF PHYSICS & CHEMISTRY - CHINESE ACAD OF SCI +1

Structure around a speaker unit and applied electric or electronic apparatus thereof

A compact lightweight speaker system without a resonance box that can reproduce the original sound with high fidelity. A speaker unit is located on a baffle board with a vibration absorbing member between a frame of the speaker unit and the baffle board. Furthermore, an acoustic resonance reflecting board of a vertical flat board type based on the operating principle of a passive radiator is formed by the baffle board and a flat board being similar to the baffle board. As a result, a compact smart design will be produced. It is applicable to an electric or electronic apparatus which produces sound.
Owner:SHIMA SYST

Multi-chamber noise control system

A noise control system is operable within a box-like structure provided by the dual bulkhead plenum of the vehicle dashboard positioned within the transfer path along which the noise is being transmitted from the source of the generated noise to the receiver of the noise in the passenger compartment of an automobile. The plenum is divided into discrete chambers into each of which is provided a counter noise generating apparatus to create a counteracting noise offsetting the noise generated at the source. The acoustic resonance of the chambers amplifies the noise control energy. The geometry of the individual chambers can be varied to optimize the packaging and sound control or shaping strategy. The sound energy permitted to pass through the plenum to the driver's side of the passenger compartment can be tuned to be different than the noise received in the passenger's side.
Owner:FORD GLOBAL TECH LLC

Method and Apparatus for Acoustic Sensing of Structures

A method and system provides for acoustic sensing of structures, including a general shape and / or configuration of the structure and movement within the structure. Acoustic waves are used to characterize structures, including any activity within. As waves from a sound source travel into the structure, they resonate within cavities and connecting tunnels or halls. This acoustic resonance is received at an acoustic receiver. The received signal is analyzed in comparison to the generated signal, and properties of the structure are determined, including the size and shape of the structure, as well as movement of objects within the structure.
Owner:UNIVERSITY OF DENVER

Low frequency electronic ballast for gas discharge lamps

An electronic ballast for high intensity gas discharge lamps where the wave form of the lamp current is square wave providing acoustic resonance and flickering free operation. The circuit, having high efficiency, operates in a wide temperature range providing ideal ballast curve and reliable ignition for the lamps. Furthermore, significant energy saving can be achieved by its externally controlled built in dimming capability.
Owner:BALLASTRONIC

Glow plug type acoustic resonance igniter

An acoustic resonance igniter uses high-pressure helium to heat a resonance cavity so a hot surface of the resonance cavity forms a source of ignition to a combustion chamber. The resonance cavity may be round or may extend linearly to increase the size of the hot surface. The combustion chamber is cooled by arranging a feed of hydrogen and oxygen which is oxygen rich and which becomes more so when ignition occurs. A second combustion chamber receives the combustion chamber output and adds additional hydrogen through ports tangential to the wall of the second combustion chamber to enrich the fuel ratio and cool the second combustion chamber. The acoustic resonance igniter is used to ignite a large rocket engine or to form a rocket thruster.
Owner:SIERRA SPACE CORP

Acoustic igniter

An acoustic resonance igniter uses gas expanding through a nozzle to form a sonic, or under-expanded supersonic, jet directed against the opening of a blind resonance cavity in a central body, setting up a high-frequency sonic resonance which heats the gas within the cavity. A pintle extends coaxially with the nozzle and injects liquid propellant into the jet. The liquid propellant ignites with the heated gas within the resonance cavity forming combustion gases. The combustion gases flow through openings in a flange which supports the resonance cavity into a combustion chamber in the same direction as the gas jet flows. The liquid propellant is injected from within the support flange in the direction of combustion gas flow to film cool the combustion chamber wall and the flange and the central body supported by the flange. The acoustic resonance igniter may form a rocket engine ignition torch or a RCS thruster.
Owner:SIERRA SPACE CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products