Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1862 results about "Multi-mode optical fiber" patented technology

Multi-mode optical fiber is a type of optical fiber mostly used for communication over short distances, such as within a building or on a campus. Typical multi-mode links have data rates of 10 Mbit/s to 10 Gbit/s over link lengths of up to 600 meters (2000 feet). Multi-mode fiber has a fairly large core diameter that enables multiple light modes to be propagated and limits the maximum length of a transmission link because of modal dispersion.

Single mode optical fiber

A large core photonic crystal fiber for transmitting radiation having a core comprising a substantially transparent core material and having a core diameter of at least 5 mu. The fiber also comprises a cladding region surrounding the length of core material, wherein the cladding region comprises a first substantially transparent cladding material, having a first refractive index, and wherein the first substantially transparent cladding material has embedded along its length a substantially periodic array of holes, wherein the holes are filled with a second cladding material having a second refractive index less than the first refractive index, such that radiation input to the optical fiber is transmitted along the length of the core material in a single mode of propagation. In a preferred embodiment, the core diameter may be at least 20 mu, and may be as large as 50 mu. The fiber is capable of transmitting higher power radiation than conventional fibres, whilst maintaining propagation in a single mode. The core material may be doped with a material capable of providing amplification under the action of pump radiation input to the fiber. The invention also relates to a fiber amplifier and a fiber laser comprising a doped large core photonic crystal fiber. The fiber may also be used in a system for transmitting radiation comprising a plurality of lengths of large core photonic crystal fiber, separated by large core photonic crystal fiber amplifiers, such that the power of radiation transmitted through the system is maintained above a predetermined threshold power.
Owner:NKT RES & INNOVATION

Single-Mode Optical Fiber Having Reduced Bending Losses

A single-mode optical fiber includes a central core, an intermediate cladding, a depressed trench, and an external optical cladding. The central core has a radius r1 and a positive refractive index difference Δn1 with the optical cladding. The intermediate cladding has a radius r2 and a positive refractive index difference Δn2 with the optical cladding, wherein Δn2 is less than Δn1. The depressed trench has a radius r3 and a negative index difference Δn3 with the optical cladding. At a wavelength of 1310 nanometers, the optical fiber has a mode field diameter (MFD) between 8.6 microns and 9.5 microns and, at a wavelength of 1550 nanometers, the optical fiber has bending losses less than about 0.25×10−3 dB / turn for a radius of curvature of 15 millimeters. At a wavelength of 1260 nanometers, attenuation of the LP11 mode to 19.3 dB is achieved over less than 90 meters of fiber.
Owner:DRAKA COMTEQ BV

Multimode Optical Fibers

A multimode optical fiber has an equivalent modal dispersion value (DMDinner&outer) of less than 0.11 ps / m for (Δλmax×D)>0.07 ps / m as measured on a modified DMD graph. The modified DMD graph accounts for chromatic dispersion to ensure that the multimode optical fiber has a calculated effective bandwidth EBc greater than 6000 MHz-km when used with multimode transverse sources.
Owner:DRAKA COMTEQ BV

Wavelength Multiplexed Optical System with Multimode Optical Fibers

ActiveUS20100021170A1Minimize modal dispersionReduced Modal DispersionWavelength-division multiplex systemsMultimode transmissionModal dispersionLength wave
The present wavelength multiplexed optical system includes a multimode optical fiber that transmits wavelength multiplexed optical signals and a plurality of multimode modal dispersion compensation optical fibers. Each modal dispersion compensation optical fiber can transmit one of the multiplex wavelengths, and each modal dispersion compensation optical fiber has an optimized index profile such that the modal dispersion for the transmitted wavelength is approximately inversely equal to the modal dispersion induced in the multimode optical fiber. The wavelength multiplexed optical system facilitates an increased bitrate without reducing bandwidth.
Owner:DRAKA COMTEQ BV

Methods and apparatus for imaging with multimode optical fibers

A multimode waveguide illuminator and imager relies on a wave front shaping system that acts to compensate for modal scrambling and light dispersion by the multimode waveguide. A first step consists of calibrating the multimode waveguide and a second step consists in projecting a specific pattern on the waveguide proximal end in order to produce the desire light pattern at its distal end. The illumination pattern can be scanned or changed dynamically only by changing the phase pattern projected at the proximal end of the waveguide. The third and last step consists in collecting the optical information, generated by the sample, through the same waveguide in order to form an image. Known free space microscopy technique can be adapted to endoscopy with multimode waveguide, such as, but not limited to, fluorescence imaging or Raman spectroscopy or imaging, 3D linear scattering imaging or two-photon imaging. Super-resolution, i.e., resolution below the diffraction limit, is achieved for example but not limited to, using the STimulated Emission Depletion microscopy (STED) technique or the Structured Illumination Microscopy (SIM) technique or a stochastic illumination based method (PALM, STORM) in combination with the multimode waveguide imaging method.
Owner:ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Multimode optical fibre communication system

A multimode optical fibre communications system, and in particular to a system in which non-linearities in the propagation of the signal through a multimode optical communications channel degrade the signal presented to the receiver. The system includes an optical transmitter unit for connection to a multimode optical fibre transmission link. The transmitter unit has a data input for receiving an input data signal, a data signal processing circuit and a source of optical radiation. The data signal processing circuit is arranged to receive the input data signal from the data input and to provide a processed data signal to the source of optical radiation and the source of optical radiation is arranged to generate from this an optical signal for transmission by a multimode optical fibre. The data processing circuit is arranged to provide from the input data signal a non-inverted data signal and an inverted data signal, receive a control signal for controlling the generation of the processed data signal, apply a controllable delay in accordance with the control signal to at least one of the non-inverted and inverted data signals, and combine the non-inverted and inverted signals after the application of the controllable delay(s) and gain factor(s) to generate the processed data signal.
Owner:BROADCOM INT PTE LTD

Dual dopant dual alpha multimode optical fiber

Multimode optical fiber is disclosed herein comprising germania and fluorine co-doped in the core of the fiber. The dopant concentration profiles are defined by a pair of alpha parameters. The operating window, or bandwidth window, is enlarged and attenuation, or loss, is low. In some embodiments, two operating windows are available for transmission.
Owner:CORNING INC

Multimode Optical System

Disclosed is an optical system including a polychromatic optical source emitting multiple transverse modes, an optical link having at least one portion of multimode optical fiber, and an optical device positioned between the optical source and the input of the multimode optical fiber. The optical device can modify the distribution of the energy coupling of the transverse modes emitted by the source in the propagation modes of the multimode optical fiber.The optical system makes it possible to use low-cost transverse multimode optical sources for producing high-bandwidth Ethernet transmission networks having excellent performance.
Owner:DRAKA COMTEQ BV

Apparatus, system and method for an adiabatic coupler for multi-mode fiber-optic transmission systems

An improved fiber-optic communications system comprises a multi-mode waveguide carrying an optical signal, a single-mode waveguide optically coupled to and receiving the optical signal from the multi-mode waveguide and an adiabatic coupler optically coupled between the multi-mode waveguide and the single-mode waveguide. The multi-mode and single-mode waveguides may be optical fibers. The adiabatic coupler may comprise a tapered core surrounded by a cladding. Alternatively, the adiabatic coupler may comprise a core surrounded by a cladding, wherein the refractive index of at least one of the core and the cladding varies over the length of the adiabatic coupler.
Owner:OCLARO NORTH AMERICA

Bend insensitivity in single mode optical fibers

An optical fiber that is relatively insensitive to bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode, the cladding region including (i) an outer cladding region having a refractive index less than that of the core region, (ii) an annular cladding pedestal region having a refractive index higher than that of the outer cladding region and comparable to that of the core region, and (iii) an annular cladding inner trench region disposed between the core region and the pedestal region, the inner trench region having a refractive index less than that of the outer cladding region. In one embodiment, the fiber also includes a (iv) an annular cladding outer trench region disposed between the pedestal region and the outer cladding region, the outer trench region having a refractive index less than that of the outer cladding region. In addition, to suppress HOMs the pedestal region is configured to resonantly couple at least one other transverse mode of the core region to at least one transverse mode of the pedestal region. Such fiber is advantageously used as access fiber, but may have other applications, such as sensor fiber.
Owner:FURAKAWA ELECTRIC NORTH AMERICA INC

Mode-locked multi-mode fiber laser pulse source

A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity. To amplify and compress optical pulses in a multi-mode (MM) optical fiber, a single-mode is launched into the MM fiber by matching the modal profile of the fundamental mode of the MM fiber with a diffraction-limited optical mode at the launch end, The fundamental mode is preserved in the MM fiber by minimizing mode-coupling by using relatively short lengths of step-index MM fibers with a few hundred modes and by minimizing fiber perturbations. Doping is confined to the center of the fiber core to preferentially amplify the fundamental mode, to reduce amplified spontaneous emission and to allow gain-guiding of the fundamental mode. Gain-guiding allows for the design of systems with length-dependent and power-dependent diameters of the fundamental mode. To allow pumping with high-power laser diodes, a double-clad amplifier structure is employed. For applications in nonlinear pulse-compression, self phase modulation and dispersion in the optical fibers can be exploited. High-power optical pulses may be linearly compressed using bulk optics dispersive delay lines or by chirped fiber Bragg gratings written directly into the SM or MM optical fiber. High-power cw lasers operating in a single near-diffraction-limited mode may be constructed from MM fibers by incorporating effective mode-filters into the laser cavity. Regenerative fiber amplifiers may be constructed from MM fibers by careful control of the recirculating mode. Higher-power Q-switched fiber lasers may be constructed by exploiting the large energy stored in MM fiber amplifiers.
Owner:FERMANN MARTIN E +1

Line fiber for WDM optical fiber transmission systems

The invention provides a monomode optical fiber having, at a wavelength of 1550 nm: an effective section area greater than or equal to 60 mum2; chromatic dispersion close to 8 ps / (nm.km); a chromatic dispersion slope of absolute value less than 0.07 ps / (nm2.km). In the range of wavelengths used in a WDM transmission system, typically 1530 nm to 1620 nm, the fiber has chromatic dispersions greater than 7 ps / (nm.km), thereby making it possible to limit non-linear effects. The invention also provides a WDM optical fiber transmission system using such a fiber as a line fiber. The small slope of its chromatic dispersion is an advantage in such a system.
Owner:DRAKA COMTEQ BV

Optical coupler comprising multimode fibers and method of making the same

An optical coupler is provided. It has a bundle of multimode fibers with a few-mode fiber in its centre. Such bundle is fused at one end which is the output end for the signal that is transmitted by the few-mode fiber. To make the coupler, this output end of the bundle is aligned and spliced with a large area core double clad fiber while preserving the modal content of the feed-through. A method for making such optical coupler is also provided. It includes the steps of bundling a central few-mode fiber with a plurality of multimode fibers and then fusing one end of such bundle and aligning it and splicing with a large core double clad fiber, while preserving fundamental mode transmission from one to the other.
Owner:ITF TECH +1

Multimode long period fiber Bragg grating machined by ultrafast laser direct writing

A multimode long period fiber Bragg grating (LPFBG) for a predetermined wavelength band. The LPFBG formed of a non-photosensitive material having an initial index of refraction. The multimode optical fiber core includes a substantially cylindrical surface, a longitudinal core axis, a core radius, and a number of index-altered portions having an altered index of refraction different from the initial cladding index of refraction. Each of the index-altered multimode optical fiber core has a first transmission surface and second transmission surface that is substantially parallel to the first transmission surface. Also, these index-altered portions are arranged within the non-photosensitive material of the multimode optical fiber core such that the first transmission surface of one portion of the plurality of index-altered portions is substantially parallel to the second transmission surface of a neighboring portion to form a long period Bragg grating structure.
Owner:PANASONIC CORP

Low bending loss multimode fiber transmission system

A bend-loss tolerant multimode fiber transmission system is provided. The system includes: a transmission fiber having a core and a cladding, and a mode-launching system for selectively exciting only a useful portion of the transmission modes, that portion corresponding to high effective refractive indices relative to a refractive index of the cladding the useful portion corresponding to a substantial number of modes. The mode-launching system may include a lead-in fiber, coupled to the transmission fiber, supporting a number of lead-in modes substantially corresponding to the number of transmission modes in the useful portion. The transmission fiber may have a refractive index profile, within a region of its core that is aligned with the lead-in fiber core, which has a shape that matches a refractive index profile shape in the lead-in fiber core. The transmission fiber core may have a graded refractive index profile that is parabolic or nearly parabolic or truncated.
Owner:LUMENTUM D O O OPTICNA VLAKNA

Optical fiber pump multiplexer

One or more single mode few-moded or multimode fibers are incorporated into a bundle to carry input to a fiber amplifier or output from a fiber amplifier or a fiber laser. The input is at the signal wavelength, which is the wavelength where amplification or lasing occurs. Each of the fibers in the bundle is cleaved individually or as a group and fiber ends are aligned in the same plane. The fiber amplifier or fiber laser may include a double clad fiber and the other fibers of the bundle couple light for cladding pumping. The device may also include a mode filter for controlling the output mode.
Owner:IMRA AMERICA

Imaging guidewire

An imaging guidewire that, in one embodiment, includes: (1) a hypotube forming an elongated main body having a distal end, (2) at least one multimode optical fiber integral with the hypotube and configured to carry laser light for ultrasonic excitation, (3) a single-mode optical fiber integral with the hypotube, having a reflective coating located on a distal end thereof and at the distal end of the elongated main body and configured to carry laser light for ultrasonic detection and (4) an imaging cap coupled to the elongated main body at the distal end and including a photoacoustic layer configured to receive the laser light from the at least one multimode optical fiber.
Owner:TOTAL WIRE CORP

Multi-mode bending-resistant fiber and production method thereof

A multimode fiber including a core and a cladding. The core has a radius (R1) of 24-26 μm, the refractive index profile thereof is a parabola, and the maximum relative refractive index difference (Δ1) is 0.9-1.1%. The cladding surrounds the core and includes from inside to outside an inner cladding, a middle cladding, and an outer cladding; a radius (R2) of the inner cladding is 1.04-1.6 times that of the core, and a relative refractive index difference (Δ2) thereof is −0.01-0.01%; the middle cladding is a graded refractive index cladding whose radius (R3) is 1.06-1.8 times that of the core, and a relative refractive index difference thereof is decreased from Δ2 to Δ4; and a radius (R4) of the outer cladding is 2.38-2.63 times that of the core, and a relative refractive index difference (Δ4) thereof is between −0.20 and −0.40%. The invention reduces the additional bending loss of the fiber, improves the bending resistance and mechanical properties, basically eliminates the internal stress, and ensures the service life even working for a long term under the condition of low radius. The method for producing the fiber is simple, effective, and suitable for mass production.
Owner:YANGTZE OPTICAL FIBRE & CABLE CO LTD

Two-channel, dual-mode, fiber optic rotary joint

ActiveUS20070217736A1Low-profile and compact structureMinimization requirementsCoupling light guidesDual modeDirect coupling
A two-channel fiber optical rotary joint has been invented in which optical signals can be transmitted simultaneously along two optical passes through a single mechanical rotational interface for both single mode fiber and multi mode fiber. The first channel of light path consists of a pair of micro-collimators, or a pair of fibers, co-axially fixed in 2 holders respectively. The light signal from one of micro-collimator, or fiber can be directly coupled into another micro-collimator, or fiber. The second channel of light path is off-axis arranged, including a pair of conventional collimators, a pair of first reflecting surfaces and a pair of second reflecting surfaces. The light signal emitted from one of the said conventional collimator will be reflected by one of the said first reflecting surface, one of the said second reflecting surface, another said second reflecting surface, and another said first reflecting surface, then coupled into another said conventional collimator. An index matching fluid is filled in the housing for lubrication and pressure compensation purposes.
Owner:PRINCETEL

Optical coherent tomographic (OCT) imaging apparatus and method using a fiber bundle

A fiber-optic bundle based optical coherence tomography (OCT) probe method is demonstrated in a multimode optical fiber bundle based OCT system. The system can achieve a lateral resolution of 12 μm and an axial resolution of 10 μm using a super-luminescent diode source. This imaging approach eliminates any moving parts in the probe and has a primary advantage for use in extremely compact and safe OCT endoscopes to image internal organs and great potential to be combined with confocal endoscopic microscopy.
Owner:RGT UNIV OF CALIFORNIA

Bandwidth-maintaining multimode optical fibers

The specification describes multimode optical fibers with specific design parameters, i.e., controlled refractive index design ratios and dimensions, which render the optical fibers largely immune to moderately severe bends. The modal structure in the optical fibers is also largely unaffected by bending, thus leaving the optical fiber bandwidth essentially unimpaired. Bend performance results were established by DMD measurements of fibers wound on mandrels vs. measurements of fibers with no severe bends.
Owner:OFS FITEL LLC

Method for manufacturing a multimode fiber pump power combiner

A multimode to low-mode optical fiber is constructed by forming a plurality of multimode optical fibers into a fiber bundle. The bundle is then selectively heated and drawn to form a bi-tapered fiber bundle having a central straight portion in which the multimode fibers are fused into a single length of fiber. During the drawing step, measures are taken to provide an aperture extending through the bi-tapered bundle, including the single straight portion of the bundle. An optical fiber having a low-mode or single-mode core is inserted through the aperture into the straight section of the bi-tapered bundle. The bi-tapered bundle and the low-mode core fiber are heated to a temperature at which cladding of the low-mode core fiber fuses to the straight portion of the bi-tapered bundle. The bi-tapered bundle is then cleaved in the straight portion to provide the multimode to low-mode optical fiber combiner. In one example, the multimode fiber bundle is formed around a metal wire before the drawing operation. After the drawing operation the wire is extracted from the bi-tapered bundle leaving the aperture in the bi-tapered bundle.
Owner:COHERENT INC

Method and apparatus for generating high power visible and near-visible laser light

A multimode-fiber Raman laser includes a pump source configured to provide optical radiation centered at a pump wavelength and characterized by a spectral bandwidth greater than 100 MHz and an oscillator resonant at an emission wavelength greater than the pump wavelength. The oscillator includes an input coupler optically aligned with the pump source and a multimode optical fiber optically coupled to the input coupler. The multimode optical fiber includes an input section having a fiber Bragg grating, an intracavity section of a predetermined length optically coupled to the input section, and an output section having a fiber Bragg grating. The oscillator also includes an output coupler optically coupled to the multimode optical fiber and configured to provide a laser output at the emission wavelength.
Owner:RAM PHOTONICS IND LLC

Apparatus and method for combining multiple optical beams in a free-space optical communications system

An apparatus and method for combining multiple optical beams into mode-scrambled optical signals. In one embodiment, the apparatus includes a plurality of laser beam sources, each to produce a modulated optical beam. A plurality of input fiber segments, each comprising a multimode optical fiber core, are operatively coupled at one end to a respective laser source to receive a respective modulated optical beam. A multimode optical beam combiner is used to operatively couple the output ends of the input fiber segments to the input end of an output fiber segment having a multimode optical fiber core. The modulated optical beams produced by the laser beam sources are combined into a single mode-scrambled optical signal. The apparatus enables multiple optical beams having similar wavelengths to be combined to increase optical signal strength. It also enables multiple optical beams having different wavelengths to be combined to form a wavelength division multiplexed signal.
Owner:OL SECURITY LIABILITY CO

Multiband optical fiber

An optical waveguide fiber having a core surrounded by a cladding. The core may have only a central segment, or a central segment and an annular segment surrounding the central segment. The central segment has a positive relative refractive index profile. The annular segment has a negative relative refractive index profile. The relative refractive index of the optical fiber provides an LP02 cable cutoff less than 850 nm and an LP21 cable cutoff less than 850 nm.
Owner:CORNING INC

Single mode optical fiber

The invention relates to a low-attenuation single mode optical fiber used in an optical fiber communication system. The single mode optical fiber comprises a core layer and a wrapping layer. The single mode optical fiber is characterized in that the refractive index distribution n (r) of the core layer and the g-type refractive index distribution of the core layer meet the formula: n (r)=n0*[1-2*delta 1*(r / R1)*g]*1 / 2 (r<=R1), the delta 1 of the core layer ranges from -0.05% to +0.05%, g ranges from 10 to 30, and the radius R1 of the core layer ranges from 4.0 microns to 5.0 microns; the wrapping layer sequentially comprises an inner wrapping layer, a middle wrapping layer and an outer wrapping layer from inner to outer, the delta 2 of the inner wrapping layer ranges from -0.3% to -0.45%, the radius R2 ranges from 20 microns to 30 microns, and the delta 3 of the middle wrapping layer is larger than delta 2, the numerical relationship between the relative refraction difference and the radius of the middle wrapping layer and the relative refraction difference and the radius of the inner wrapping layer is V=(R3-R2)*(delta 3-delta 2), and V ranges from 0.5*10-2-micron% to 7*10-2-micron%. The attenuation coefficient, at the 1550-nanometer position, of the optical fiber is smaller than or equal to 0.180dB / km. The low-attenuation single mode optical fiber is low in optical fiber loss, good in manufacturing technology, low in cost and suitable for scale production.
Owner:YANGTZE OPTICAL FIBRE & CABLE CO LTD

Multimode long period fiber bragg grating machined by ultrafast laser direct writing

A multimode long period fiber Bragg grating (LPFBG) for a predetermined wavelength band. The LPFBG formed of a non-photosensitive material having an initial index of refraction. The multimode optical fiber core includes a substantially cylindrical surface, a longitudinal core axis, a core radius, and a number of index-altered portions having an altered index of refraction different from the initial cladding index of refraction. Each of the index-altered multimode optical fiber core has a first transmission surface and second transmission surface that is substantially parallel to the first transmission surface. Also, these index-altered portions are arranged within the non-photosensitive material of the multimode optical fiber core such that the first transmission surface of one portion of the plurality of index-altered portions is substantially parallel to the second transmission surface of a neighboring portion to form a long period Bragg grating structure.
Owner:PANASONIC CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products