Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1246 results about "Attenuation coefficient" patented technology

The linear attenuation coefficient, attenuation coefficient, or narrow-beam attenuation coefficient characterizes how easily a volume of material can be penetrated by a beam of light, sound, particles, or other energy or matter. A large attenuation coefficient means that the beam is quickly "attenuated" (weakened) as it passes through the medium, and a small attenuation coefficient means that the medium is relatively transparent to the beam. The SI unit of attenuation coefficient is the reciprocal metre (m⁻¹). Extinction coefficient is an old term for this quantity but is still used in meteorology and climatology. Most commonly, the quantity measures the number of downward e-foldings of the original intensity that will be had as the energy passes through a unit (e.g. one meter) thickness of material, so that an attenuation coefficient of 1 m⁻¹ means that after passing through 1 metre, the radiation will be reduced by a factor of e, and for material with a coefficient of 2 m⁻¹, it will be reduced twice by e, or e². Other measures may use a different factor than e, such as the decadic attenuation coefficient below. The broad-beam attenuation coefficient counts forward-scattered radiation as transmitted rather than attenuated, and is more applicable to radiation shielding.

Apparatus and methods for imaging and attenuation correction

Imaging apparatus, is provided, comprising a first device, for obtaining a first image, by a first modality, selected from the group consisting of SPECT, PET, CT, an extracorporeal gamma scan, an extracorporeal beta scan, x-rays, an intracorporeal gamma scan, an intracorporeal beta scan, an intravascular gamma scan, an intravascular beta scan, and a combination thereof, and a second device, for obtaining a second, structural image, by a second modality, selected from the group consisting of a three-dimensional ultrasound, an MRI operative by an internal magnetic field, an extracorporeal ultrasound, an extracorporeal MRI operative by an external magnetic field, an intracorporeal ultrasound, an intracorporeal MRI operative by an external magnetic field, an intravascular ultrasound, and a combination thereof, and wherein the apparatus further includes a computerized system, configured to construct an attenuation map, for the first image, based on the second, structural image. Additionally, the computerized system is configured to display an attenuation-corrected first image as well as a superposition of the attenuation-corrected first image and the second, structural image. Furthermore, the apparatus is operative to guide an in-vivo instrument based on the superposition.
Owner:SPECTRUM DYNAMICS MEDICAL LTD

System, apparatus, and method for conducting electromagnetic induction surveys

A method is provided for conducting an electromagnetic induction survey of a geological formation penetrated by a borehole lined with a conductive casing. The method includes positioning a transmitter in the borehole, whereby the transmitter generates a transmitter magnetic moment, and positioning a distant receiver external of the borehole to detect a magnetic field induced by the transmitter, whereby the distant receiver is disposed across part of the formation from the borehole. Furthermore, an auxiliary receiver is positioned in the borehole proximate the transmitter to detect a magnetic field induced by the transmitter and attenuated by the conductive casing. Subsequently, a first casing attenuation factor that is applicable to the magnetic field measured by the auxiliary receiver is determined from a ratio of the measured magnetic field at the auxiliary receiver and the transmitter magnetic moment. A second casing attenuation factor applicable to the measurement of the magnetic field at the distant receiver is determined from a non-linear relationship (e.g., a power law relationship) between the first casing attenuation factor and the second attenuation factor, wherein the second attenuation factor is less than the first attenuation factor. Then, a formation attenuation factor applicable to the measured magnetic field at the distant receiver is determined from a relationship between the magnetic moment of the transmitter, the second casing attenuation factor, and the measured magnetic field at the distant receiver. Finally, the method correlates the determined value of the formation attenuation factor to a resistivity characteristic of the formation between the distant receiver and the transmitter.
Owner:SCHLUMBERGER TECH CORP

Single mode optical fiber

The invention relates to a low-attenuation single mode optical fiber used in an optical fiber communication system. The single mode optical fiber comprises a core layer and a wrapping layer. The single mode optical fiber is characterized in that the refractive index distribution n (r) of the core layer and the g-type refractive index distribution of the core layer meet the formula: n (r)=n0*[1-2*delta 1*(r/R1)*g]*1/2 (r<=R1), the delta 1 of the core layer ranges from -0.05% to +0.05%, g ranges from 10 to 30, and the radius R1 of the core layer ranges from 4.0 microns to 5.0 microns; the wrapping layer sequentially comprises an inner wrapping layer, a middle wrapping layer and an outer wrapping layer from inner to outer, the delta 2 of the inner wrapping layer ranges from -0.3% to -0.45%, the radius R2 ranges from 20 microns to 30 microns, and the delta 3 of the middle wrapping layer is larger than delta 2, the numerical relationship between the relative refraction difference and the radius of the middle wrapping layer and the relative refraction difference and the radius of the inner wrapping layer is V=(R3-R2)*(delta 3-delta 2), and V ranges from 0.5*10-2-micron% to 7*10-2-micron%. The attenuation coefficient, at the 1550-nanometer position, of the optical fiber is smaller than or equal to 0.180dB/km. The low-attenuation single mode optical fiber is low in optical fiber loss, good in manufacturing technology, low in cost and suitable for scale production.
Owner:YANGTZE OPTICAL FIBRE & CABLE CO LTD

Attenuation coefficient switching type hydraulic damper

There is disclosed a damping coefficient switching-type hydraulic damper that may automatically switch a damping coefficient without needing supply of energy from the outside at all, and also may always surely exert an energy absorption capacity greater than that of a typical hydraulic damper. While a piston (3) is moving in a direction A, a mechanical drive means (30) composed of a straight gear (31) and a crank mechanism (31) allows an on-off control operation valve (11), that is, a flow regulating valve (10) to be placed in a closed state, and a damping coefficient is switched to a maximum value Cmax. When a movement of the piston (3) is turned in a direction B at a left-side maximum point of amplitude, the mechanical drive means (30) works to once open the flow regulating valve (10) to perform elimination of a load, so that the damping coefficient is switched to a minimum value (Cmin). When the piston (3) further moves in the direction B, the mechanical drive means (30) works to close the flow regulating valve (10) again, and the damping coefficient is returned to the maximum value (Cmax). Similar working to the above is also applied to a right-side maximum point of amplitude, and seismic response control is attained with repetition of the above operations.
Owner:KAJIMA CORP

Attenuation filter-based metal artifact removing mixed reconstruction method for CT images

The invention discloses an attenuation filter-based metal artifact removing mixed reconstruction method for CT images. When a CT acquires data, if a scanned object contains a metal object with high absorption coefficients which comprises a tissue attenuation coefficient and a metal attenuation coefficient to cause projection data jump, the scanned object is considered to be destructive and should be corrected; thus, the metal artifact is greatly weakened during FPB reconstruction. The method comprises the following steps: after determining a metal projection area, performing adaptive attenuation adjustment and filter on the determined metal area; reconstructing an entire image through the FBP, performing EM iterative reconstruction on the metal area by using the primary projection data, and correcting the metal area after the adaptive attenuation filter and reconstruction; and compensating the metal projection area. The numerical simulation CT experiments prove that the method can effectively remove metal artifacts and well keep the information of the metal and the surrounding tissue of the metal. Particularly under the condition of multiple metal objects, the method has low calculation complexity and high practical value.
Owner:SHANGHAI WEIHONG ELECTRONICS TECH +1

Graphics accelerator with shift count generation for handling potential fixed-point numeric overflows

A 3-D graphics accelerator for performing lighting operations using operands within a given fixed point numeric range. The 3-D graphics accelerator includes a first computational unit which is configured to compute a value of an attenuation factor usable for performing said lighting operation for local lights. The attenuation factor is represented in floating point format. The first computational unit is also configured to represent the attenuation factor in an intermediate format including a first intermediate value (a scaled attenuation factor value within the given fixed point numeric range), and a second intermediate value (a shift count usable to convert the scaled attenuation factor value back to the original attenuation factor value). The 3-D graphics accelerator further includes a lighting unit coupled to said first computational unit. The first computational unit is further configured to convey the intermediate representation of the attenuation factor to the lighting unit. The lighting unit performs lighting calculations in fixed point, using operands within the given numeric range (such as the scaled attenuation factors). The lighting unit generates intermediate color values as a result of these lighting calculations. The lighting unit then uses the shift count value to shift the intermediate color values by an appropriate amount, thereby generating a final color value. The lighting unit clamps said final color value to a predetermined maximum color value in response to said final color value exceeding said predetermined maximum color value.
Owner:ORACLE INT CORP

System, apparatus, and method for conducting electromagnetic induction surveys

A method is provided for conducting an electromagnetic induction survey of a geological formation penetrated by a borehole lined with a conductive casing. The method includes positioning a transmitter in the borehole, whereby the transmitter generates a transmitter magnetic moment, and positioning a distant receiver external of the borehole to detect a magnetic field induced by the transmitter, whereby the distant receiver is disposed across part of the formation from the borehole. Furthermore, an auxiliary receiver is positioned in the borehole proximate the transmitter to detect a magnetic field induced by the transmitter and attenuated by the conductive casing. Subsequently, a first casing attenuation factor that is applicable to the magnetic field measured by the auxiliary receiver is determined from a ratio of the measured magnetic field at the auxiliary receiver and the transmitter magnetic moment. A second casing attenuation factor applicable to the measurement of the magnetic field at the distant receiver is determined from a non-linear relationship (e.g., a power law relationship) between the first casing attenuation factor and the second attenuation factor, wherein the second attenuation factor is less than the first attenuation factor. Then, a formation attenuation factor applicable to the measured magnetic field at the distant receiver is determined from a relationship between the magnetic moment of the transmitter, the second casing attenuation factor, and the measured magnetic field at the distant receiver. Finally, the method correlates the determined value of the formation attenuation factor to a resistivity characteristic of the formation between the distant receiver and the transmitter.
Owner:SCHLUMBERGER TECH CORP

Model parameter training method and device, server and storage medium

The invention discloses a model parameter training method and device, a server and a storage medium, which belongs to the technical field of information. The method comprises the steps that an initialparameter value and a sample set of a model parameter of a target model are acquired; the first gradient of the model parameter is calculated according to the initial parameter value and the sample set; iterative quantization processing is carried out on the first gradient to acquire a quantized second gradient, wherein the iterative quantization processing is quantization processing carried outbased on an error cumulative value corresponding to the t-1-th iteration round in the t-th iteration round, and the error cumulative value is a quantization error cumulative value calculated based ona preset time attenuation coefficient; and the quantized second gradient is transmitted to a primary computing node, wherein the quantized second gradient is used to instruct the primary computing node to update the initial parameter value according to the quantized second gradient to acquire an updated parameter value. According to the embodiment of the invention, a quantization error correctionmethod is used to quantize and compress the first gradient of the model parameter, which reduces the communication cost and network overhead of gradient transmission.
Owner:TENCENT TECH (SHENZHEN) CO LTD

Method for iterating and reconstructing double-energy-spectrum CT image

The invention discloses a method for iterating and reconstructing a double-energy-spectrum CT image. The method is used for reconstructing a base material density image of a measured object and comprises the following steps of (1) selecting a calibration model body containing tow types of different base materials according to the size of a material of the measured object; measuring the model body through a double-energy-spectrum CT system, and calibrating a double-energy-spectrum multi-color orthographic projection equation presenting a curvilinear relationship between a multi-color projection value and base material thickness combination; (2) collecting double-energy-spectrum multi-color projection data of the measured object by utilizing the double-energy-spectrum CT system; (3) constructing a iterative scheme according to the calibrated multi-color orthographic projection equation, and iterating and reconstructing the double-base-material density image of the measured object through comparison with the practically measured multi-color projection data and addition of a physical constraint condition. Compared with the existing method, the method for iterating and reconstructing the double-energy-spectrum CT image has the advantages that the high energy spectrum and the low energy spectrum of the double-energy-spectrum CT system and an attenuation coefficient of the base materials do not need to be detected in advance, and meanwhile the method is applied to the situation that the high energy spectrum and the low energy spectrum are matched with each other or not in geometry.
Owner:CAPITAL NORMAL UNIVERSITY +1

Ocean spilt oil film thickness hyperspectral remote sensing estimation method based on parameter lookup table

InactiveCN102997856AMeet the needs of emergency monitoringEstimation is objective and efficientUsing optical meansPerformance indexKnowledge Field
The invention relates to an ocean spilt oil film thickness hyperspectral remote sensing estimation method based on a parameter lookup table and belongs to the field of ocean environment monitoring research. The method includes the steps of obtaining and pre-processing standard oil film thickness continuous change hyperspectral data by designing a simulation experiment; obtaining and pre-processing ocean spilt oil satellite remote sensing data; resampling a standard oil film spectrum based on a satellite sensor performance index; normalizing spectral reflectivity; building an oil film thickness optical calculating model; building an attenuation parameter lookup table; normalizing the reflectivity of satellite data and conducting mask treatment; inquiring and building an optimal wave band of the satellite data and relevant parameters; and calculating the oil film thickness in the satellite data through the parameter lookup table and the optical model. Compared with a traditional observation means, by means of the ocean spilt oil film thickness hyperspectral remote sensing estimation method, field workload is less, the thickness of the spilt oil film can be quantized, the thickness of an oil film in a spilt oil area can be calculated without entering an ocean spilt oil pollution area, and requirements of ocean split oil emergency monitoring and evaluation can be met.
Owner:NANJING UNIV

CT (Computed Tomography) value correcting method for cone-beam CT

The invention discloses a CT (Computed Tomography) value correcting method for cone-beam CT. The CT value correcting method comprises the following steps: scanning air, a water phantom and a bone tissue body phantom under different scanning conditions to respectively obtain projection data; reestablishing an image; removing noise and artifacts by adopting a polynomial fitting method based on a template image; selecting a plurality of interested regions and calculating a mean value of an attenuation coefficient and a standard deviation of the attenuation coefficient; obtaining the value range of the attenuation coefficient and taking the attenuation coefficient of maximum occurrence probability; fitting the attenuation coefficients of the air, the water phantom and the bone tissue body phantom under the different scanning conditions with corresponding ideal CT values to obtain respective fitting curves; performing CT scanning and image reestablishment on a scanned material; obtaining a CT value image according to a material attenuation coefficient image and a fitting curve and finishing the CT value correction. According to the CT value correcting method disclosed by the invention, image noise and artifact can be effectively reduced, the reestablished image of single material reaches the uniformity to the great degree, the precision of the attenuation coefficient of the material becomes higher and further high accuracy for the fitting of the curve of the CT value and the material attenuation coefficient is realized.
Owner:NORTHEASTERN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products