Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

3294results about "Processor architectures/configuration" patented technology

Data processing system and method

A powerful, scaleable, and reconfigurable image processing system and method of processing data therein is described. This general purpose, reconfigurable engine with toroidal topology, distributed memory, and wide bandwidth I/O are capable of solving real applications at real-time speeds. The reconfigurable image processing system can be optimized to efficiently perform specialized computations, such as real-time video and audio processing. This reconfigurable image processing system provides high performance via high computational density, high memory bandwidth, and high I/O bandwidth. Generally, the reconfigurable image processing system and its control structure include a homogeneous array of 16 field programmable gate arrays (FPGA) and 16 static random access memories (SRAM) arranged in a partial torus configuration. The reconfigurable image processing system also includes a PCI bus interface chip, a clock control chip, and a datapath chip. It can be implemented in a single board. It receives data from its external environment, computes correspondence, and uses the results of the correspondence computations for various post-processing industrial applications. The reconfigurable image processing system determines correspondence by using non-parametric local transforms followed by correlation. These non-parametric local transforms include the census and rank transforms. Other embodiments involve a combination of correspondence, rectification, a left-right consistency check, and the application of an interest operator.

Method and system for programmable pipelined graphics processing with branching instructions

A programmable, pipelined graphics processor (e.g., a vertex processor) having at least two processing pipelines, a graphics processing system including such a processor, and a pipelined graphics data processing method allowing parallel processing and also handling branching instructions and preventing conflicts among pipelines. Preferably, each pipeline processes data in accordance with a program including by executing branch instructions, and the processor is operable in any one of a parallel processing mode in which at least two data values to be processed in parallel in accordance with the same program are launched simultaneously into multiple pipelines, and a serialized mode in which only one pipeline at a time receives input data values to be processed in accordance with the program (and operation of each other pipeline is frozen). During parallel processing mode operation, mode control circuitry recognizes and resolves branch instructions to be executed (before processing of data in accordance with each branch instruction starts) and causes the processor to operate in the serialized mode when (and preferably only for as long as) necessary to prevent any conflict between the pipelines due to branching. In other embodiments, the processor is operable in any one of a parallel processing mode and a limited serialized mode in which operation of each of a sequence of pipelines (or pipeline sets) pauses for a limited number of clock cycles. The processor enters the limited serialized mode in response to detecting a conflict-causing instruction that could cause a conflict between resources shared by the pipelines during parallel processing mode operation.

Method and apparatus for anti-aliasing in a graphics system

A graphics system including a custom graphics and audio processor produces exciting 2D and 3D graphics and surround sound. The system includes a graphics and audio processor including a 3D graphics pipeline and an audio digital signal processor. The system achieves highly efficient full-scene anti-aliasing by implementing a programmable-location super-sampling arrangement and using a selectable-weight vertical-pixel support area blending filter. For a 2×2 pixel group (quad), the locations of three samples within each super-sampled pixel are individually selectable. A twelve-bit multi-sample coverage mask is used to determine which of twelve samples within a pixel quad are enabled based on the portions of each pixel occupied by a primitive fragment and any pre-computed z-buffering. Each super-sampled pixel is filtered during a copy-out operation from a local memory to an external frame buffer using a pixel blending filter arrangement that combines seven samples from three vertically arranged pixels. Three samples are taken from the current pixel, two samples are taken from a pixel immediately above the current pixel and two samples are taken from a pixel immediately below the current pixel. A weighted average is then computed based on the enabled samples to determine the final color for the pixel. The weight coefficients used in the blending filter are also individually programmable. De-flickering of thin one-pixel tall horizontal lines for interlaced video displays is also accomplished by using the pixel blending filter to blend color samples from pixels in alternate scan lines.

Method and system for scalable, dataflow-based, programmable processing of graphics data

A scalable pipelined pixel shader that processes packets of data and preserves the format of each packet at each processing stage. Each packet is an ordered array of data values, at least one of which is an instruction pointer. Each member of the ordered array can be indicative of any type of data. As a packet progresses through the pixel shader during processing, each member of the ordered array can be replaced by a sequence of data values indicative of different types of data (e.g., an address of a texel, a texel, or a partially or fully processed color value). Information required for the pixel shader to process each packet is contained in the packet, and thus the pixel shader is scalable in the sense that it can be implemented in modular fashion to include any number of identical pipelined processing stages and can execute the same program regardless of the number of stages. Preferably, each processing stage is itself scalable, can be implemented to include an arbitrary number of identical pipelined instruction execution stages known as microblenders, and can execute the same program regardless of the number of microblenders. The current value of the instruction pointer (IP) in a packet determines the next instruction to be executed on the data contained in the packet. Any processing unit can change the instruction that will be executed by a subsequent processing unit by modifying the IP (and/or condition codes) of a packet that it asserts to the subsequent processing unit. Other aspects of the invention include graphics processors (each including a pixel shader configured in accordance with the invention), methods and systems for generating packets of data for processing in accordance with the invention, and methods for pipelined processing of packets of data.

Efficient graphics pipeline with a pixel cache and data pre-fetching

An efficient graphics pipeline with a pixel cache and data pre-fetching. By combining the use of a pixel cache in the graphics pipeline and the pre-fetching of data into the pixel cache, the graphics pipeline of the present invention is able to take best advantage of the high bandwidth of the memory system while effectively masking the latency of the memory system. More particularly, advantageous reuse of pixel data is enabled by caching, which when combined with pre-fetching masks the memory latency and delivers high throughput. As such, the present invention provides a novel and superior graphics pipeline over the prior art in terms of more efficient data access and much greater throughput. In one embodiment, the present invention is practiced within a computer system having a processor for issuing commands; a memory sub-system for storing information including graphics data; and a graphics sub-system for processing the graphics data according to the commands from the processor. The graphics sub-system comprises a rasterizer for traversing graphics primitives of the graphics data to generate pixel coordinates for pixels corresponding to the graphics primitives; a graphics pipeline for processing the graphics data of the pixels; and a pixel cache for caching the pixel data. In this embodiment, he graphics sub-system masks the inherent latency of the memory sub-system by pre-fetching the graphics data and storing the graphics data within the pixel cache.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products