Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

581 results about "High energy beam" patented technology

Equipment for manufacturing large-size metal part in high energy beam additive manufacturing mode and control method of equipment

The invention discloses equipment for manufacturing a large-size metal part in a high energy beam additive manufacturing mode and a control method of the equipment. The equipment comprises a work cavity, a worktable, a control system, a high energy beam scanning generator, a powder storage hopper, a powder laying device and a gas purification module, wherein the worktable is composed of a forming cylinder and a powder recycling cylinder, and the upper surface of the forming cylinder and the upper surface of the powder recycling cylinder are coplanar and form a work plane. The control system controls the high energy beam scanning generator and the powder laying device to move opposite to the worktable in the powder laying direction. The equipment for manufacturing the large-size metal part in the high energy beam additive manufacturing mode and the control method of the equipment largely shorten the waiting time caused by pre-installation of a powder bed when a common laser/electron beam selective melting technology is used for processing a part, thereby obviously improving the forming efficiency of high energy beam additive manufacturing. Through the application of the equipment for manufacturing the large-size metal part in the high energy beam additive manufacturing mode and the control method of the equipment, a metal part with a meter-grade size, high performance, high accuracy and a complex structure can be manufactured efficiently and rapidly.
Owner:TECH LASER TECH SHANGHAI CO LTD

High energy beam area-selecting fusing method and device capable of controlling temperature gradient in shaping area

ActiveCN104959604AEnsure directional solidification conditionsReal-time monitoring of temperature gradientsAdditive manufacturing apparatusTemperature controlHeat flow
The invention discloses a high energy beam area-selecting fusing method and device capable of controlling temperature gradient in a shaping area, and a temperature measurement module and a temperature control module are added to a shaping assembly of the device. When the device is used for manufacturing high-energy beam additive, the temperature gradient interval in a molten pool can be calculated in real time utilizing the boundary temperature, acquired by the temperature measurement module, of a shaping area, proper hot-fluid conditions can be applied to the shaping area through the temperature control module to control temperature gradient intervals of the molten pool and the shaping area, so the molten pool can always satisfy conditions of directional solidification, high precision and performance directional solidified metal members and monocrystalline metal members having different sizes and structures can be efficiently manufactured. By adopting the high energy beam area-selecting fusing method and device capable of controlling the temperature gradient in a shaping area, not only the temperature gradient of the shaping area can always satisfy directional solidification conditions, but also the temperature gradient distribution in stages of a shaping process can be flexibly changed according to actual process needs, so various of functional / structural gradient members can be manufactured.
Owner:HUAZHONG UNIV OF SCI & TECH

High-energy beam-ultrasonic composite additive manufacturing method for metal materials

The invention discloses a high-energy beam-ultrasonic composite additive manufacturing method for metal materials and belongs to the field of additive manufacturing (3D printing) of metal materials. The method comprises the steps that based on the technical principle of layer-by-layer accumulation of additive manufacturing, metal forming materials are melted through high-energy beams; after the metal forming materials are melted / solidified layer by layer to accumulate to a certain number of layers, the solidified layers are subjected to ultrasonic peening to have compressive plastic deformation, so the internal stress and the internal defects of formed parts are eliminated, and crystalline grains are refined; afterwards, the process of layer-by-layer melting / solidifying accumulation and the process of ultrasonic peening are continued until the whole forming process of metal members is completed. According to the method, real-time layer-by-layer treatment is performed on the solidified layers through ultrasonic peening, so the internal stress and the internal defects can be effectively reduced or eliminated, the crystalline grains can be refined, and the mechanical property of the metal members through additive manufacturing can be improved.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Linear adaptive optics system in low power beam path and method

A system and method for providing a wavefront corrected high-energy beam of electromagnetic energy. In the illustrative embodiment, the system includes a source of a first beam of electromagnetic energy; an amplifier for amplifying said beam to provide a second beam; a sensor for sensing aberration in said second beam and providing an error signal in response thereto; a processor for processing said error signal and providing a correction signal in response thereto; and a spatial light modulator responsive to said correction signal for adjusting said beam to facilitate a correction of said aberration thereof. In more specific embodiments, the source is a laser and the sensor is a laser wavefront sensor. A mirror is disposed between said modulator and said sensor for sampling said beam. The mirror has an optical thin-film dielectric coating on at least one optical surface thereof. The coating is effective to sample said beam and transmit a low power sample thereof to said means for sensing aberration. The processor is an adaptive optics processor. The spatial light modulator may be a micro electro-mechanical system deformable mirror or an optical phased array. In the illustrative embodiment, the source is a master oscillator and the amplifier is a power amplifier beamline. An outcoupler is disposed between the oscillator and the amplifier.
Owner:RAYTHEON CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products