Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

95results about How to "Large gradient" patented technology

Method and apparatus for converting thermal energy to mechanical energy

A method and apparatus for converting thermal energy to mechanical energy which can use a wide range of fuels and perform with a high efficiency. Operating on a little utilized thermodynamic cycle of isentropic compression, isothermal expansion, isentropic expansion and finally constant pressure cooling and contraction. The external heat engine utilizes a heat exchanger carrying heat from the external energy source to the working parts of the engine. Pistons and cylinders are activated by appropriate means to adiabatically compress the working fluid, for example ambient air, to transfer the entire mass of the air through the heat exchanger to accomplish isothermal expansion followed by adiabatic expansion and, finally, exhaust the air to ambient to allow for constant pressure cooling and contraction. Valve pistons in conjunction with the cylinders form valves that allow for the exchange of working fluid with ambient. Energy is added to the engine during isothermal expansion, whereby the energy of compression is added by a flywheel or other appropriate energy storage means, said flywheel stores energy recovered during adiabatic expansion. The thermodynamic cycle described and the engine embodiments disclosed, when run in reverse, perform as a heat pump or refrigeration device.
Owner:CROW DARBY

Method and apparatus for converting thermal energy to mechanical energy

A method and apparatus for converting thermal energy to mechanical energy which can use a wide range of fuels and perform with a high efficiency. Operating on a little utilized thermodynamic cycle of isentropic compression, isothermal expansion, isentropic expansion and finally constant pressure cooling and contraction. The external heat engine utilizes a heat exchanger carrying heat from the external energy source to the working parts of the engine. Pistons and cylinders are activated by appropriate means to adiabatically compress the working fluid, for example ambient air, to transfer the entire mass of the air through the heat exchanger to accomplish isothermal expansion followed by adiabatic expansion and, finally, exhaust the air to ambient to allow for constant pressure cooling and contraction. Valve pistons in conjunction with the cylinders form valves that allow for the exchange of working fluid with ambient. Energy is added to the engine during isothermal expansion, whereby the energy of compression is added by a flywheel or other appropriate energy storage means, said flywheel stores energy recovered during adiabatic expansion. The thermodynamic cycle described and the engine embodiments disclosed, when run in reverse, perform as a heat pump or refrigeration device.
Owner:CROW DARBY

Thermally driven knudsen pump

The present invention relates to thermally driven pumps. More specifically, one embodiment of the present invention relates to the use of a thermoelectric material to create a thermally driven, bi-directional pump, such as a micro pump, with no moving parts using the thermal transpiration effect (a Knudsen pump). One embodiment of the thermally driven pump of the present invention utilizes a thermoelectric material to assist with the thermal transpiration process resulting in a substantially symmetrical, bidirectional pump. A thermoelectric module is used to induce a temperature gradient across a nanoporous article having at least one nanochannel thus creating fluid flow via thermal transpiration across the nanochannel. The use of the thermoelectric module eliminates the need for a heat sink thereby making the pump substantially symmetrical and enabling bidirectional flow which is accomplished by reversing the polarity of the power supply to the thermoelectric module resulting in reversing the direction of heat transfer.A second embodiment of the thermally driven pump of the present invention comprises a uni-directional, pneumatic, micro fluidic, Knudsen pump which can be integrated into a lab-on-chip device and is configured to pump liquids. The Knudsen pump of the second embodiment is generally comprised of a channel system comprised of a nanochannel and a shallow channel embedded in a bottom substrate and capable of alignment in series with other channels within a lab-on-chip substrate. The nanochannel and shallow channel are both covered by a second substrate comprised of material conducive to finalize creation of the Knudsen channels. A heater is also included within the nanochannel to induce gas flow by thermal transpiration which pneumatically moves liquid through the channels of a lab-on-chip.
Owner:UNIV OF LOUISVILLE RES FOUND INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products