Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

787 results about "Transpiration" patented technology

Transpiration is the process of water movement through a plant and its evaporation from aerial parts, such as leaves, stems and flowers. Water is necessary for plants but only a small amount of water taken up by the roots is used for growth and metabolism. The remaining 97–99.5% is lost by transpiration and guttation. Leaf surfaces are dotted with pores called stomata, and in most plants they are more numerous on the undersides of the foliage. The stomata are bordered by guard cells and their stomatal accessory cells (together known as stomatal complex) that open and close the pore. Transpiration occurs through the stomatal apertures, and can be thought of as a necessary "cost" associated with the opening of the stomata to allow the diffusion of carbon dioxide gas from the air for photosynthesis. Transpiration also cools plants, changes osmotic pressure of cells, and enables mass flow of mineral nutrients and water from roots to shoots. Two major factors influence the rate of water flow from the soil to the roots: the hydraulic conductivity of the soil and the magnitude of the pressure gradient through the soil. Both of these factors influence the rate of bulk flow of water moving from the roots to the stomatal pores in the leaves via the xylem.

Production of potable water and freshwater needs for human, animal and plants from hot and humid air

InactiveUS6868690B2Reduces cargo spaceMinimize any benefitGeneral water supply conservationSeawater treatmentParticulatesFresh water organism
Systems and methods are disclosed for extracting freshwater from atmospheric humidity in extremely hot and humid climates and supplying freshwater to a small group of people, a building, a farm, or forestation area. The freshwater is treated to provide drinking water by disinfecting to eliminate microorganisms and filtration to remove suspended particulates from air, erosion or corrosion products, and disinfected waste. Compact units provide drinking water for individuals, passengers in cars, vans, trucks, or recreational boats, or crewmembers on a seagoing cargo ship whether from atmospheric humidity or from moisture-laden gases. Furthermore, systems are disclosed for the ample supply of freshwater with minimal treatment for small- to large-sized buildings in a manner that alleviates the heat load on buildings. Collection of freshwater from hot humid ambient air is also provided for other uses, such as irrigation and farm animal drinking. Various methods are used for condensation of water vapor suspended in the air as alternative to conventional refrigeration cycles using CFC refrigerants. Devices are disclosed using naturally occurring brackish cold water, circulation of cooling water cooled by thermoelectric cooling or thermoacoustic refrigeration as well as evaporative cooling and transpiration cooling. Water produced by the systems may flow under gravitational forces entirely or with the assistance of boasting pumps.
Owner:FAKIEH RES & DEV CENT

Integrated sap flow monitoring, data logging, automatic irrigation control scheduling system

An integrated system for monitoring sap flow and simultaneously performing data-logging and automatically scheduling irrigation in a field; comprising a plurality of in situ sap flow gauges that perform its comprehensive computer-controlled tasks in the field being irrigated. This plurality of sap flow gauge can be detached from and reattached to a like plurality of plant stems as appropriate. A scaling mechanism is used to calculate crop water usage in variously-sized fields. An integrated portable computer apparatus is programmed to perform a plurality of actions including sap flow monitoring via a controller and data-logger; data-logging and automatic irrigation scheduling; a plurality of sap flow gauges; an automatic rain gage; a water meter; an irrigation valve actuator; and any auxiliary and independent weather or soil monitoring sensors. The system is connected to a PC, mounted in a weatherproof enclosure, and powered by rechargeable battery, solar panel, or AC mains power with battery backup. Computerized monitoring and control procedures are initialized via a custom-developed graphical user interface. At any predetermined interval set by a user, the depth or volume of water required to balance transpiration losses is calculated and irrigation is then automatically triggered. The system affords closed loop control with water flow from soil through plant to atmosphere and from irrigation—and having the benefit of a feedback loop.
Owner:BAVEL MICHAEL VAN

Integrated sap flow monitoring, data logging, automatic irrigation control scheduling system

An integrated system for monitoring sap flow and simultaneously performing data-logging and automatically scheduling irrigation in a field; comprising a plurality of in situ sap flow gauges that perform its comprehensive computer-controlled tasks in the field being irrigated. This plurality of sap flow gauge can be detached from and reattached to a like plurality of plant stems as appropriate. A scaling mechanism is used to calculate crop water usage in variously-sized fields. An integrated portable computer apparatus is programmed to perform a plurality of actions including sap flow monitoring via a controller and data-logger; data-logging and automatic irrigation scheduling; a plurality of sap flow gauges; an automatic rain gage; a water meter; an irrigation valve actuator; and any auxiliary and independent weather or soil monitoring sensors. The system is connected to a PC, mounted in a weatherproof enclosure, and powered by rechargeable battery, solar panel, or AC mains power with battery backup. Computerized monitoring and control procedures are initialized via a custom-developed graphical user interface. At any predetermined interval set by a user, the depth or volume of water required to balance transpiration losses is calculated and irrigation is then automatically triggered. The system affords closed loop control with water flow from soil through plant to atmosphere and from irrigation—and having the benefit of a feedback loop.
Owner:BAVEL MICHAEL VAN

Heated wall surface cooling structure and gas turbine impeller vane with the same

The invention relates to a cooling structure of the heated wall surface and a gas turbine blade of the cooling structure; wherein, the cooling structure comprises a compact wall surface layer, and a plurality of discrete through holes for the coolant to pass through are arranged on the compact wall surface layer; a porous coating is covered on the heated side of the compact wall surface layer to enable the porous coating and the compact wall surface layer with a plurality of discrete through holes to form a structure of double-layer superimposition, and the outlet of the discrete through hole is communicated with the porous coating. The porous coating can be continuously covered on the compact wall surface layer, and also can be covered on the local areas of the outlet of the discrete through holes. The invention has the advantages of synthesizing the characteristics of gas film cooling and transpiration cooling, fully combining the advantages of two cooling ways, effectively improving the cooling efficiency of the wall surface, reducing the geothermal gradient of the wall surface, and avoiding the continuous increase of the heat stress of materials. Simultaneously, the intensity of the cooling structure of the invention is enough to be used for common impeller machinery.
Owner:TSINGHUA UNIV

System and method for promoting growth of multiple root systems in a hydroponic environment

This invention provides a container and associated growing process that promotes the growth of at least two different, specialized types of roots and that provides the optimal conditions for these two types of roots. In particular, the container defines an upper section that promotes growth of a fine intricate web of roots that is surrounded by an organic, non-organic or mixed organic and non-organic nutrient-rich medium. This upper section is separated by a permeable medium divider that allows predetermined quantities of water to pass into the upper section (to maintain desired moisture in the nutrient medium (soil), while a lower/bottom section contains a reservoir of hydroponic water that may be relatively free of any nutrients (e.g. “non-nutrient” water). Extending from the upper root ball are a series of water-drinking straw-like roots that transpire water directly from the non-nutrient reservoir and that are continually exposed to massive amounts of atmospheric oxygen. A transport (capillary) device allows water to wick from the reservoir into the upper section to maintain a desired level of moisture in the upper roots, and carrying with it additional dissolved oxygen via evaporation and transpiration. The bottom section can be filled with an acceptable porous, water-storing medium such as gravel or rock wool. The permeable medium divider can include one or more capillary devices that allow transfer of water from the lower reservoir into the upper section. In certain embodiments, the divider can include a series of formations that allow it to sit in an elevated manner on a water-containing structure (such as a sponge-like medium).
Owner:WRIGHT PAUL L

Device for purifying air by eliminating smoke and dust and the technique thereof

A flue gas purifying collector and process method thereof are provided. The flue gas purifying collector comprises a transpiration cooling flue, a water seal, a flue, a ring-seal Venturi tube, a dehydrator, a flowmeter, pipelines, a main air blower, a three-way valve, a rotary water seal, an irradiation flue pipe, a water treatment device, a U-shape water seal, a gas cabinet, etc, characterized in that the transpiration cooling flue is connected with a cooling washing tower with a nozzle arranged inside the cooling washing tower, the flue gas outlet on the lower part of the collector is connected to the flue gas inlet on the lower part of the ring-seal Venturi tube, the flue gas outlet of the ring-seal Venturi tube is connected to the dehydrator, and on the throat opening of the ring-seal Venturi tube and below the heavy iron are arranged a water supply pipe and a nozzle, and a heavy iron inversed cone is arrange inside the throat opening. An up-running type flue gas flowing manner and water supply below the heavy iron are employed in the process provided in the invention, redundant mechanical water can be directly reclaimed without passing through the throat opening of the ring-seal Venturi tube, water is atomized thoroughly and agglomerates with dust on the throat opening of the ring-seal Venturi tube, thereby improving dust purifying and dust collecting effect, facilitating the adjustment of the heavy iron, and preventing dust agglomeration below the heavy iron and dust deposit on the throat opening of the ring-seal Venturi tube.
Owner:北京中冶设备研究设计总院有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products