Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1006results about "Volume/mass flow by thermal effects" patented technology

Method for wide range gas flow system with real time flow measurement and correction

A gas delivery system accurately measures and optionally regulates mass flow rate in real time. A fluid conduit connects an inlet valve, calibration volume, flow restrictor, and outlet valve in series. Pressure and temperature sensors are coupled to the calibration volume. One or more pressure sensors may be attached across the flow restrictor. Alternatively, an absolute pressure sensor may be attached upstream of the flow restrictor. One embodiment of differential pressure sensors comprises a floating reference differential pressure sensor, including a first transducer attached to the fluid conduit upstream of the flow restrictor and a second transducer attached to the conduit downstream of the flow restrictor. In this embodiment, each transducer receives a reference pressure from a reference source, and optionally, after the calibration volume is charged, the floating reference differential pressure transducers are calibrated. When gas flow is initiated, differential and/or absolute pressure measurements are repeatedly taken, and a measured mass flow rate calculated thereon. Gas flow is adjusted until the measured mass flow rate reaches a target mass flow. Using the temperature/pressure sensors at the calibration volume, repeated calculations of actual flow rate are made to uncover any discrepancy between actual and measured mass flow rates. Whenever a discrepancy is found, the manner of calculating measured mass flow is conditioned to account for the discrepancy; thus, the measured mass flow rate more accurately represents the actual mass flow rate thereby providing an actual mass flow rate more accurately achieving the target mass flow rate.

Method for constructing anti-reflection microstructure using single layer nanometer particle as etching blocking layer

The invention belongs to the surface patterning microstructure construction technique, which relates to a method for constructing a microstructure with anti-reflection performance on a foundation base by combining the self-assembly technique with the reactive ion beam etching technique. The method is to take monolayer polymeric micro-spheres, silicon dioxide micro-spheres and nano-particles of metal or metal oxides as a barrier layer and implement the RIE etching to the foundation base, then an approximate cone-shaped microstructure is constructed on the foundation base, and the structure has extreme high anti-reflection performance, thereby effectively improving the light energy utilization rate, reducing the interference of veiling glare in an optical system, increasing the optical transmittance, and further improving the sensitivity and stability of the optical system, and the method can be used for constructing large-area anti-reflection structures. The method of the invention has advantages of simple operation, changeable foundation base, strong applicability, good repeatability, low cost, high efficiency, adjustable anti-reflective applied wavelength and conformity to industrialized standards, and can be used for making photoelectric devices such as solar batteries and white light sensors.

Water Use Monitoring Apparatus

The present invention is a water use and/or a water energy use monitoring apparatus that is affixed to the hot and cold water supply piping for continuously (or on demand) monitoring displaying the water and water energy (hot vs. ambient) use within a residential or commercial building. A first wire or wireless means is incorporated to communicate with a remote display for viewing by the owner of a commercial building or occupier/resident of a home. A second optional wire or wireless means can be incorporated that can be monitored by civil, commercial, governmental or municipal operators or agencies, using a remote display and/or recorder means or by a secure wire or wireless communication network (e.g. cell phone, smart phone or other similar technology communication means). A third wireless means communicates water parameter data utilizing typical cell tower technology and/or mesh network technology. The water use monitor apparatus includes a power generation, a microprocessor, temperature and water flow sensors, optional water quality sensors, timing circuits, wireless circuitry, and a display means. A wired or wireless means is designed to electronically communicate water use, water energy use and/or water quality information to a remotely located display apparatus or typical cell phone, smart phones, or similar apparatus for convenient observation by a commercial, operator or occupier, resident, municipal or government agency.

System to measure density, specific gravity, and flow rate of fluids, meter, and related methods

A system to measure fluid flow characteristics in a pipeline, meter, and methods includes a pipeline having a passageway to transport flowing fluid therethrough, a process density meter including at least portions thereof positioned within the pipeline to provide flowing fluid characteristics including volumetric flow rate, fluid density, and mass flow rate of the flowing fluid, and a fluid characteristic display to display the fluid characteristics. The process density meter includes a vortex-shedding body positioned within the pipeline to form vortices and a vortex meter having a vortex frequency sensor to measure the frequency of the vortices and to determine the volumetric flow rate. The process density meter further includes a differential pressure meter positioned adjacent the vortex-shedding body to produce a differential pressure meter flow rate signal indicative of the density of fluid when flowing through the pipeline. The process density meter also includes a thermal flow meter positioned adjacent the vortex-shedding body to produce a mass flow rate signal indicative of the mass flow rate of fluid when flowing through the pipeline. The process density meter produces an output of a volumetric flow rate, a flowing fluid density, and a mass flow rate to be displayed by the fluid characteristic display.

Flow rate and flow velocity measurement device

A flow measurement device is disclosed, in which an accumulation of pollution substance onto a detection element is prevented, and which can measure a reverse flow similarly to a normal flow. On both ends of an outer wall 23 outer peripheral portion of a divided flow pipe 20 having a OMEGA-shape pipe passage, there are oppositely formed an inlet port 25 and an outlet port 26, which open in faces orthogonal to a flow direction of a main flow M that is a detection object. Within the divided flow pipe 20, by a curved partition 27, plural branch flow passages 28a, 28b mutually branching and joining in the divided flow pipe 20 are formed. Inside both end portions of the outer wall 23, undulation portions 32, 33 are formed so as to clog an inlet and an outlet of the outer peripheral side branch flow passage 28a and, by this, throttles are formed respectively in a flow passage between the inlet port 25 and the inlet of the branch flow passage 28a and a flow passage between the outlet port 26 and the outlet of the branch flow passage 28a. In a bottom portion of the outer wall 23 of the divided flow pipe 20, a detection element 31 is attached so as to be exposed to a flow in the outer peripheral side branch flow passage 28a and, against its detection face, a down flow DW further divided from a divided flow D obliquely impinges.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products