Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

364results about How to "Accurate flow" patented technology

Method for wide range gas flow system with real time flow measurement and correction

A gas delivery system accurately measures and optionally regulates mass flow rate in real time. A fluid conduit connects an inlet valve, calibration volume, flow restrictor, and outlet valve in series. Pressure and temperature sensors are coupled to the calibration volume. One or more pressure sensors may be attached across the flow restrictor. Alternatively, an absolute pressure sensor may be attached upstream of the flow restrictor. One embodiment of differential pressure sensors comprises a floating reference differential pressure sensor, including a first transducer attached to the fluid conduit upstream of the flow restrictor and a second transducer attached to the conduit downstream of the flow restrictor. In this embodiment, each transducer receives a reference pressure from a reference source, and optionally, after the calibration volume is charged, the floating reference differential pressure transducers are calibrated. When gas flow is initiated, differential and/or absolute pressure measurements are repeatedly taken, and a measured mass flow rate calculated thereon. Gas flow is adjusted until the measured mass flow rate reaches a target mass flow. Using the temperature/pressure sensors at the calibration volume, repeated calculations of actual flow rate are made to uncover any discrepancy between actual and measured mass flow rates. Whenever a discrepancy is found, the manner of calculating measured mass flow is conditioned to account for the discrepancy; thus, the measured mass flow rate more accurately represents the actual mass flow rate thereby providing an actual mass flow rate more accurately achieving the target mass flow rate.
Owner:CYBER INSTR TECH LLC AN ARIZONA LIMITED LIABILITY +1

Decentralized industrial process simulation system

ActiveUS20110131017A1Accurately solves massAccurately flow balanceProgramme controlAnalogue computers for control systemsMass storageParallel computing
A high fidelity distributed plant simulation technique includes a plurality of separate simulation modules that may be stored and executed separately in different drops or computing devices. The simulation modules communicate directly with one another to perform accurate simulation of a plant, without requiring a centralized coordinator to coordinate the operation of the simulation system. In particular, numerous simulation modules are created, with each simulation module including a model of an associated plant element and these simulation modules are stored in different drops of a computer network to perform distributed simulation of a plant or a portion of a plant. At least some of the simulation modules, when executing, perform mass flow balances taking into account process variables associated with adjacent simulation modules to thereby assure pressure, temperature and flow balancing (i.e., conservation of mass flow) through the entire simulation system. In a dynamic situation, a transient mass storage relay technique is used to account for transient changes in mass flow through any non-storage devices being simulated by the simulation modules. Moreover, adjacent simulation modules located in different drops communicate directly with one another using a background processing task, which simplifies communications between adjacent simulation modules without the need for a central coordinator.
Owner:EMERSON PROCESS MANAGEMENT POWER & WATER SOLUTIONS

Exterior surface mounted adjustable wind deflector

A wind deflector assembly attachable to the exterior, front or side surface of a vehicle windshield or body, adaptable to be connected to differently shaped and contoured windshields and bodywork, tunable to obtain the desired wind deflection effect and, in some embodiments, removable and reattachable to the vehicle windshield or other aerodynamically desirable locations on the vehicle body. The exterior surface mounted adjustable wind deflector of the present invention comprises a transparent, flexible shield along with two integrated mounting assemblies in the preferred embodiment. The mounting assemblies employ a clamshell type connector adapted for adhesive attachment to the exterior front surface of a windshield without having to drill or otherwise alter the windshield. In other embodiments, the mounting assemblies may utilize a simple non-clamshell adhesive connector, a hook-and-loop connector, a magnetic connector, or similar connection methods to attach the wind deflector to an aerodynamically desirable location on the vehicle windshield or body. The mounting assemblies each comprise a peripherally-toothed post that is integrated into of one the leaves of the clamshell connector. The post is threadedly mated to one end of a stem extending along the central longitudinal axis of the post. The other end of the stem is threadedly mated to a ball. A platform connector element carries as a part thereof a jaw-forming socket sized to receive the ball and squeeze it so as to maintain an adjusted position when the jaws of the socket are tightened down thereagainst. The platform connector element further includes means to attach the shield to the mounting assemblies using screws and adhesive tape.
Owner:SAUNDERS CHARLES A
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products