Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1532results about "Flow control using electric means" patented technology

Method for wide range gas flow system with real time flow measurement and correction

A gas delivery system accurately measures and optionally regulates mass flow rate in real time. A fluid conduit connects an inlet valve, calibration volume, flow restrictor, and outlet valve in series. Pressure and temperature sensors are coupled to the calibration volume. One or more pressure sensors may be attached across the flow restrictor. Alternatively, an absolute pressure sensor may be attached upstream of the flow restrictor. One embodiment of differential pressure sensors comprises a floating reference differential pressure sensor, including a first transducer attached to the fluid conduit upstream of the flow restrictor and a second transducer attached to the conduit downstream of the flow restrictor. In this embodiment, each transducer receives a reference pressure from a reference source, and optionally, after the calibration volume is charged, the floating reference differential pressure transducers are calibrated. When gas flow is initiated, differential and/or absolute pressure measurements are repeatedly taken, and a measured mass flow rate calculated thereon. Gas flow is adjusted until the measured mass flow rate reaches a target mass flow. Using the temperature/pressure sensors at the calibration volume, repeated calculations of actual flow rate are made to uncover any discrepancy between actual and measured mass flow rates. Whenever a discrepancy is found, the manner of calculating measured mass flow is conditioned to account for the discrepancy; thus, the measured mass flow rate more accurately represents the actual mass flow rate thereby providing an actual mass flow rate more accurately achieving the target mass flow rate.

Method and Apparatus for Pump Control Using Varying Equivalent System Characteristic Curve, AKA an Adaptive Control Curve

The present invention provides, e.g., apparatus comprising at least one processor; at least one memory including computer program code; the at least one memory and computer program code being configured, with at least one processor, to cause the apparatus at least to: respond to signaling containing information about an instant pressure and a flow rate of fluid being pumped in a pumping system, and obtain an adaptive control curve based at least partly on the instant pressure and flow rate using an adaptive moving average filter. The adaptive moving average filter may be based at least partly on a system flow equation: SAMAt=AMAF(Qt/√{square root over (ΔPt)}), where the function AMAF is an adaptive moving average filter (AMAF), and the parameters Q and ΔP are a system flow rate and differential pressure respectively. The at least one memory and computer program code may be configured to, with the at least one processor, to cause the apparatus at least to obtain an optimal control pressure set point from the adaptive control curve with respect to an instant flow rate or a moving average flow rate as SPt=MA(Qt)/SAMAt, where the function MA is a moving average filter (MA), to obtain a desired pump speed through a PID control.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products