A method and apparatus for pressure infusion and temperature control of infused liquids includes a receptacle for receiving a liquid-filled bag containing intravenous solution or other liquid and an inflatable pressure device. The inflatable pressure device is disposed within a pressure device bag and is positioned proximate the liquid-filled bag in the receptacle. The inflatable pressure device expands within the pressure device bag upon inflation and exerts pressure on the liquid-filled bag. A heating element may be disposed on the inflatable pressure device bag to heat the liquid-filled bag to a desired temperature. The liquid may alternatively be maintained at a desired temperature, while flowing to a patient via a heating assembly disposed along a tube. The heating assembly includes a sleeve having a slot for receiving the tube and a plurality of individually controlled heaters. An infrared sensing device is mounted proximate a drip chamber to ascertain a drip count, while a temperature sensor is disposed within a holder that is positioned toward the entry site on a patient. A heat controller controls the heaters based on a drip count, while a safety controller disables heater operation in response to liquid temperature exceeding the desired temperature. Thus, the safety controller and heat controller, in combination, control the heating assembly heaters based on liquid temperature and flow rate, respectively. Alternatively, the liquid-filled bag may be heated to a desired temperature whereby the heating assembly includes a single heater controlled by a controller to maintain the liquid at the desired temperature during infusion of the liquid into a patient.