Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

102 results about "Power dissipation minimization" patented technology

Integrated reverse battery protection circuit for an external MOSFET switch

A reverse battery protection circuits that provides an integrated reverse battery condition solution for protection of external NMOS switches during the reverse battery condition is disclosed herein. This reverse battery protection circuit minimizes power consumption during a reverse battery event wherein there is no need for mechanical adjustments such as heat sinking and clamping to extract the heat away from the silicon and not destroy the device. Specifically, the reverse battery protection circuit includes a push-pull gate drive circuit coupled between the first and second power supply rail. A protection subcircuit portion connects between a first output node and the second power supply rail to turn the external FET ‘on’ during the reverse battery condition. In particular, the protection subcircuit portion connects to the external FET device and includes a p-channel device connected between a second output node that biases the external FET device and a first diode. A resistor connects between a first output node of the reverse battery protection circuit to provide a voltage drop between the drain terminal and the gate of the p-channel device. A second diode connects between the gate and the source of the p-channel device. In addition, a clamping circuit connects between the second output node and the third output node to provide clamping in the instance where the voltage at the second output node momentarily rises too high.
Owner:TEXAS INSTR INC

MOS transistors substitute circuit having a transformer/data interface function, particularly for ISDN networks and corresponding control and driving switch configuration

The invention relates to a MOS transistors substitutive circuit having a transformer/data interface function, in particular for ISDN networks, comprising first (11a) and second (11b) power supply/transmitter blocks, the first power supply/transmitter block (11a) being connected between a voltage reference (V) and a first data interface (RX), and the second power supply/transmitter block (11b) being connected between a ground potential reference (GND) and a second data interface (TX), both power supply/transmitter blocks being connected to a supply voltage reference (VDD). The MOS transistors substitutive circuit according to the invention comprises first (12) and second (12') MOS transistor pairs connected to the voltage reference (V), the MOS transistors being diode configured and held in their saturation range, so as to have a high A.C. impedance and virtually zero D.C. impedance, thereby minimizing power dissipation through the substitutive circuit.The invention also concerns a control and driving switch configuration for a network termination of at least first (11) and second (11') MOS transistors substitutive circuits according to the invention, operating respectively in a first condition ("normal condition") of operation of the network termination characterized by the presence of the polarity reverse control signal (Scrp), and a second condition ("RM emergency condition") of operation of the network termination characterized by the absence of the polarity reverse control signal (Scrp). The control configuration selects the voltage reference being applied to the power supply/transmitter blocks.
Owner:STMICROELECTRONICS SRL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products