Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1893 results about "Side lobe" patented technology

In antenna engineering, side lobes or sidelobes are the lobes (local maxima) of the far field radiation pattern of an antenna or other radiation source, that are not the main lobe. The radiation pattern of most antennas shows a pattern of "lobes" at various angles, directions where the radiated signal strength reaches a maximum, separated by "nulls", angles at which the radiated signal strength falls to zero. This can be viewed as the diffraction pattern of the antenna. In a directional antenna in which the objective is to emit the radio waves in one direction, the lobe in that direction is designed to have a larger field strength than the others; this is the "main lobe". The other lobes are called "side lobes", and usually represent unwanted radiation in undesired directions. The side lobe directly behind the main lobe is called the back lobe. The longer the antenna relative to the radio wavelength, the more lobes its radiation pattern has. In transmitting antennas, excessive side lobe radiation wastes energy and may cause interference to other equipment. Another disadvantage is that confidential information may be picked up by unintended receivers. In receiving antennas, side lobes may pick up interfering signals, and increase the noise level in the receiver.

Multi-target detection method based on short-time Fourier transform and fractional Fourier transform

The invention discloses a multi-target detection method based on short-time Fourier transform and fractional Fourier transform, which belongs to the technical field of the radar target detection. The method comprises the following steps that the short-time Fourier transform is firstly used for conducting the primary detection on a signal, then a binaryzation method is used for processing a primary detection result, phase position of the signal is kept in the processing, the fractional Fourier transform is used for detecting a signal after being restored by the short-time Fourier transform, by adopting multiple methods for combined processing, advantages of overcoming phenomenon that a strong signal side lobe presses a weak signal main lobe, improving the signal-to-noise ratio of the signal to be detected, and solving the problem of the large false alarm possibility which is caused by adopting traditional method to detect the signal at the low signal-to-noise ratio can be realized; and meanwhile, an image contrast method and a gradual elimination method are adopted, multiple strong signals and weak signals with different or identical frequency modulation rates can be detected by utilizing the space and power strength information of the signal, so that the detection probability and the calculation efficiency can be further improved, easiness in project realization is realized, and the method is worth of being adopted and popularized.
Owner:ZHONGBEI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products