Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1076 results about "Window function" patented technology

In signal processing and statistics, a window function (also known as an apodization function or tapering function) is a mathematical function that is zero-valued outside of some chosen interval, normally symmetric around the middle of the interval, usually near a maximum in the middle, and usually tapering away from the middle. Mathematically, when another function or waveform/data-sequence is "multiplied" by a window function, the product is also zero-valued outside the interval: all that is left is the part where they overlap, the "view through the window". Equivalently, and in actual practice, the segment of data within the window is first isolated, and then only that data is multiplied by the window function values. Thus, tapering, not segmentation, is the main purpose of window functions.

Computationally efficent radar processing method and sytem for SAR and gmti on a slow moving platform

A method and system for processing radar data obtained from a platform which is subjected to non-uniform movement, the distance the platform travels during the formation of an image comprising an aperture; the system comprising software programming for performing a subroutine for building up an average pulse representing a single point on the aperture; the subroutine comprising the steps of inputting radar data from a radar antenna; passing the radar signal through low noise amplifier to reduce impact of electronic noise from the radar system; down converting the signal with a mixer to obtain a lower frequency; filtering out harmonics from the higher frequency range; sampling the radar data using an analog to digital converter at least at Nyquist down range frequency; based upon the IF of the radar; determining a scene center (center of SAR imagery) for the purpose of motion compensation; performing a two stage averaging scheme of the received signals with a variable window function; determining a window function based upon the velocity and acceleration of the platform and scene center; the window function comprising a first stage window; coherently averaging N pulses together to create an average pulse; performing an inverse Fourier transform; compensating to the scene center by multiplying by a complex exponential based upon both the GPS and inertial navigational system; summing the average pulses using low pass filter; the software programming operating to repeat the step of building up an average pulse a first predetermined number of times for a time period that is less than the Nyquist sample time interval; the software programming operating to repeat the step of building an average pulse for a predetermined number of times to generate a second predetermined number of average pulses; the software programming operating to perform a two dimensional inverse Fourier transform to obtain SAR image; outputting the SAR image on a display screen; and a display for displaying the outputted SAR image.
Owner:US SEC THE ARMY THE

Method for processing sampling value of digitalization protection test control apparatus

The present invention relates to a sampling value processing method of integrative device based on a sampling value interface, which is used for protecting and monitoring a digital substation. The method is characterized in that the sampling value interface module of the integrative device is used for real-time judgment on the effectiveness and rationality of sampling values which are transmitted from an incorporating unit; the secondary Lagrange interpolation are calculated for a small quantity of broken or lost sampling values; a window function is used for designing a high-order FIR digital filter which is used for filtering the sampling values; the on-line parameters of the threshold and the filter are regulated in a self-adapting way according to the parameters of conventional data sets transmitted by the sampling values; the protection function is resampled by adopting a secondary Lagrange algorithm of fixed frequency according to the requirements of protecting and monitoring functions; the monitoring function is first processed by iterative computation of frequency; the real-time resampling frequency s regulated according to the signal frequency; the sampling values are resampled by adopting the secondary Lagrange algorithm according to the novel sampling frequency, thus the processing method not only satisfies the requirements of protection and application, but also improves the measurement accuracy.
Owner:NARI TECH CO LTD

Efficient system and method for converting between different transform-domain signal representations

InactiveUS6963842B2Eliminating intermediate time-domain processingInnovative designCode conversionSpeech synthesisTime domainFourier transform on finite groups
A memory-efficient system converting a signal from a first transform domain to a second transform domain. The system includes a first mechanism that obtains an input signal expressed via a first transform-domain signal representation. A second mechanism expresses the input signal via a second transform-domain signal representation without intermediate time-domain conversion. In the specific embodiment, the input signal is a Modified Discrete Cosine Transform (MDCT) signal. The second transform-domain signal representation is a Discrete Fourier Transform (DFT) signal. The second mechanism further includes a third mechanism that combines effects of an inverse MDCT, a synthesis window function, and an analysis window function, and provides a first signal in response thereto. A fourth mechanism converts the MDCT signal to the DFT signal based on the first signal. In a more specific embodiment, the synthesis window function is an MDCT synthesis window function, while the analysis window function is a DFT analysis window function. The fourth mechanism includes a mechanism for performing a fast transform on the MDCT signal and providing a first transformed signal in response thereto. The fourth mechanism further includes a mechanism for selectively delaying and updating the first transformed signal to yield second and third transformed signals, respectively, in response thereto. The fourth mechanism further includes a mechanism for operating on the first, second, and third transformed signals via third, second, and first combined window functions, respectively, and providing third, second, and first windowed signals, respectively, in response thereto. An adder adds the first, second, and third windowed functions to provide an added digital signal. An inverse DFT circuit performs an inverse DFT on the added digital signal to provide the DFT signal as output.
Owner:CREATIVE TECH CORP

Computationally efficent radar processing method and sytem for SAR and gmti on a slow moving platform

A method and system for processing radar data obtained from a platform which is subjected to non-uniform movement, the distance the platform travels during the formation of an image comprising an aperture; the system comprising software programming for performing a subroutine for building up an average pulse representing a single point on the aperture; the subroutine comprising the steps of inputting radar data from a radar antenna; passing the radar signal through low noise amplifier to reduce impact of electronic noise from the radar system; down converting the signal with a mixer to obtain a lower frequency; filtering out harmonics from the higher frequency range; sampling the radar data using an analog to digital converter at least at Nyquist down range frequency; based upon the IF of the radar; determining a scene center (center of SAR imagery) for the purpose of motion compensation; performing a two stage averaging scheme of the received signals with a variable window function; determining a window function based upon the velocity and acceleration of the platform and scene center; the window function comprising a first stage window; coherently averaging N pulses together to create an average pulse; performing an inverse Fourier transform; compensating to the scene center by multiplying by a complex exponential based upon both the GPS and inertial navigational system; summing the average pulses using low pass filter; the software programming operating to repeat the step of building up an average pulse a first predetermined number of times for a time period that is less than the Nyquist sample time interval; the software programming operating to repeat the step of building an average pulse for a predetermined number of times to generate a second predetermined number of average pulses; the software programming operating to perform a two dimensional inverse Fourier transform to obtain SAR image; outputting the SAR image on a display screen; and a display for displaying the outputted SAR image.
Owner:UNITED STATES OF AMERICA THE AS REPRESENTED BY THE SEC OF THE ARMY

Harmonic analysis method based on Kaiser self-convolution window dual-spectrum line interpolation FFT (Fast Fourier Transform) and device thereof

The invention discloses a harmonic analysis method based on Kaiser self-convolution window dual-spectrum line interpolation FFT (Fast Fourier Transform) and a device thereof. The method comprises the following steps of sampling a signal: sampling a time-domain continuous signal, and discretizing to obtain an infinitely long discrete sequence; windowing a four-order Kaiser self-convolution window function: performing four-order Kaiser self-convolution window operation on the infinitely long discrete sequence; performing N-point FFT on a windowed and truncated signal to obtain the discrete spectrum of the signal; determining the peak parameter of the discrete spectrum: searching the local spectrum peak of each integer harmonic frequency around the integer harmonic frequency; and calculating a harmonic parameter: solving a coefficient alpha by adopting a discrete spectrum interpolation correction formula based on an LSM (Least Square Method), and calculating parameters such as a harmonic frequency, an amplitude, an initial phase angle and the like. Due to the adoption of the method, the fundamental and harmonic components of a tested signal can be detected rapidly and accurately, and accurate frequency measurement is realized; and the method is convenient for implementing an embedded system, and the tested signal can be detected continuously for a long time.
Owner:HUNAN UNIV

Microwave contactless heart rate sensor

ActiveUS20150018676A1SensorsMeasuring/recording heart/pulse rateFrequency spectrumReflection Magnitude
A heart-rate sensor for detecting artery blood-flow volume per unit length change in a human or animal subject, which comprises an antenna for sensing the instantaneous volume of blood in the artery of the subject, to be measured; a RADAR unit for transmitting microwave signals into a subject's body part or limb representing tissue targets. The output of the RADAR unit includes a superposition of signals each of which corresponding to a different tissue target with amplitudes that relate to the target's reflection strength; a sampling circuitry for converting reflected signals to digital; a window function circuitry for suppressing unwanted spectral sidebands originating from the subsequent processor operating on time truncated data; an FFT processor following the window function circuitry, for splitting the superposition according to its relative frequency into a multiplicity of bins, each of which with an amplitude that represents the reflection magnitude of a target at a specific distance from the antenna; a signal processor for filtering out the effect of the sensor movement with respect to the subject body part, or the movement of the body part, and for generating a signal, the amplitude of which is proportional to the artery varying dilatation representing the heart-rate; a heart-rate estimator for measuring the frequency of the artery dilatation variations and for canceling the interference of the amplitude of any signal that does not originate from the artery; a battery for powering the sensor.
Owner:SENSIFREE

Multi-scale target tracking method based on background suppression and foreground anti-jamming

InactiveCN108053419AGood tracking effectTo achieve the purpose of background suppressionImage enhancementImage analysisAnti jammingWindow function
The invention discloses a multi-scale target tracking method based on background suppression and foreground anti-jamming, which relates to the technical field of target tracking. The method includes the following steps: constructing and initializing a color probability model and a DCF tracking model; using an adaptive Gaussian window function to suppress the background in the previous frame of image, calculating the filter response map of a target position based on FHOG features in the previous frame of image, calculating the color probability distribution of the previous frame of image, obtaining the color response map of the target position, linearly fitting the filter response map and the color response map, and predicting a target position of next frame of image; updating the scale information of the target in the next frame of image according to the predicted target position of the next frame of image and based on a scale pyramid model; and carrying out adaptive dense sampling according to the target position and scale information of the next frame of image, calculating the FHOG features and color histogram of the next frame of image, and updating the DCF tracking model and the color probability model.
Owner:WUHAN DANWAN TECH CO LTD

One-dimensional deep convolution network underwater multi-target recognition method

The invention provides a one-dimensional deep convolution network underwater multi-target recognition method. A 6dB/frequency doubling one-order digital filter is adopted to enhance a high-frequency part to enable a signal spectrum to be flattened; a window function is selected to intercept signals, and signals with the duration of 170 ms are acquired as the best input frame length for a convolutional neural network; the one-dimensional deep convolution network is adopted to carry out feature extraction on sound signals; a training sample set is used for learning the convolution network to obtain network structure parameters with the best features; and an extreme learning machine is selected to carry out classification and recognition on output features of the convolution network. the deep convolution network in the deep learning is used for carrying out feature extraction on the sound signals, the traditional manual feature extraction is replaced, the automatically-extracted sound features contain richer recognition information, the extreme learning machine is used for carrying out classification and recognition on features automatically extracted by the convolution network, features different from those obtained in the traditional manual analysis mode can be effectively found out, and the underwater sound signal recognition rate is improved.
Owner:HARBIN ENG UNIV

Application startup optimization method and apparatus, storage medium and intelligent terminal

ActiveCN107748686AImprove interactivityAvoid the situation where the application interface is displayed againProgram loading/initiatingExecution for user interfacesMan machineApplication software
Embodiments of the invention disclose an application startup optimization method and apparatus, a storage medium and an intelligent terminal. The method comprises the steps of obtaining startup operation for an application; when the application does not run in a background, judging whether the application enables a startup window function or not; when the application does not enable the startup window function, loading a preset picture, creating a startup window according to the preset picture, and displaying the startup window; and when a preset condition is met, switching to operation of displaying an application interface corresponding to the application. By adopting the technical scheme, when the startup operation for the application is detected, the startup window is displayed, thereby intuitively showing that a system starts the application in response to the startup operation; and when the preset condition is met, the startup window is switched to the application interface of the application, so that the situation that the application interface is displayed after stay for a period of time on a desktop in related technologies is avoided and the man-machine interactive performance is improved.
Owner:GUANGDONG OPPO MOBILE TELECOMM CORP LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products