Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

126 results about "Hollow waveguide" patented technology

Radar level gauge system with leakage detection

A radar level gauge system, for determining a filling level of a product contained in a tank, comprising a transceiver for generating, transmitting and receiving electromagnetic signals; an antenna arranged to direct transmitted electromagnetic signals towards a surface of the product contained in the tank, and to return reflected electromagnetic signals resulting from reflections at impedance transitions encountered by the transmitted electromagnetic signals back to the transceiver; and a hollow waveguide connecting the transceiver and the antenna for guiding the electromagnetic signals therebetween. A sealing member is arranged to seal the waveguide to prevent fluid from passing into the waveguide from an interior of the tank; and the radar level gauge system further comprises processing circuitry connected to the transceiver and configured to determine the filling level based on the reflected electromagnetic signals. The radar level gauge system further comprises a leak indication member being movably arranged inside the hollow waveguide in such a way that a force resulting from leakage of the fluid at the sealing member causes a movement of the leak indication member when acting thereon; and the hollow waveguide is configured in such a way that the movement of the leak indication member causes a change in at least one microwave propagation characteristic of the hollow waveguide.
Owner:ROSEMOUNT TANK RADAR

Focusing multimodal optical microprobe devices

The present invention provides an optical microprobe device and method for focusing multimodal radiation with wavelength-scale spatial resolution and delivering the focused radiation to a specimen, including: a radiation source; and one or more of a plurality of optically transparent or semitransparent spheres and a plurality of optically transparent or semitransparent cylinders optically coupled to the radiation source; wherein the one or more of the plurality of optically transparent or semitransparent spheres and the plurality of optically transparent or semitransparent cylinders periodically focus radiation optically transmitted from the radiation source such that radiation ultimately transmitted to the specimen has predetermined characteristics. Preferably, the spheres or cylinders are assembled inside one of a hollow waveguide, a hollow-core photonic crystal fiber, a capillary tube, and integrated in a multimode fiber. Alternatively, the spheres or cylinders are assembled on a substrate. Optionally, the optical microprobe device also includes one or more of a waveguide, an optical fiber, a lens, and an optical structure disposed between the radiation source and the spheres or cylinders. Optionally, the spheres or cylinders are made from optically nonlinear or active materials that permit efficient nonlinear frequency generation and low-threshold lasing using the optical microprobe device.
Owner:JUNIVERSITI OF NORT KAROLINA EHT SHARLOTT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products