Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1104 results about "Diffraction efficiency" patented technology

Diffraction efficiency is the performance of diffractive optical elements – especially diffraction gratings – in terms of power throughput. It's a measure of how much optical power is diffracted into a designated direction compared to the power incident onto the diffractive element.

Electrically switchable polymer-dispersed liquid crystal materials including switchable optical couplers and reconfigurable optical interconnects

A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octancic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved. The optional use of a surfactant allows low switching voltages at lower frequencies than without a surfactant. In an alternative embodiment, a PDLC material in accordance with the invention can be utilized to form reflection gratings, including switchable reflection gratings. In still further embodiments, a PDLC material in accordance with the invention can be used to form switchable subwavelength gratings. By further processing, static transmission, reflection, and subwavelength PDLC materials can be formed. In addition, PDLC materials in accordance with the present invention can be used to form switchable slanted transmission gratings suitable for switchable optical coupling and reconfigurable optical interconnects.
Owner:LEIDOS

Optimizing performance parameters for switchable polymer dispersed liquid crystal optical elements

InactiveUS6950173B1Reduce smogLimiting operation temperatureNon-linear opticsOptical elementsDisplay deviceEngineering
Described herein are the materials, mechanisms and procedures for optimizing various performance parameters of HPDLC optical devices in order to meet differing performance requirements. These optimization tailoring techniques include control and independent optimization of switchable HPDLC optical devices to meet the demanding requirements of anticipated applications for, inter alia, the telecommunications and display industries. These techniques include optimization of diffraction efficiency, i.e., index modulation, polarization dependence control, haze, cosmetic quality, control of response and relaxation time, voltage driving for on and off switching, and material uniformity. This control and independent optimization tailors properties of switchable HPDLC optical devices according to the specific requirements of the application of the switchable HPDLC optical device. The invention disclosed herein retains the desirable attributes of the multi-functional acrylate system for forming HPDLC optical devices, but adds new materials to the acrylate system and/or new process control to the recording to optimize performance parameters as may be needed for specific applications. This results in high optical quality switchable holograms with good diffraction efficiency and low, stable switching voltage.
Owner:LEIDOS

Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays

The objective of the present invention is providing a method for fabricating high quality diffractive waveplates and their arrays that exhibit high diffraction efficiency over large area, the method being capable of inexpensive large volume production. The method uses a polarization converter for converting the polarization of generally non-monochromatic and partially coherent input light beam into a pattern of periodic spatial modulation at the output of said polarization converter. A substrate carrying a photoalignment layer is exposed to said polarization modulation pattern and is coated subsequently with a liquid crystalline material. The high quality diffractive waveplates of the present invention are obtained when the exposure time of said photoalignment layer exceeds by generally an order of magnitude the time period that would be sufficient for producing homogeneous orientation of liquid crystalline materials brought in contact with said photoalignment layer. Compared to holographic techniques, the method is robust with respect to mechanical noises, ambient conditions, and allows inexpensive production via printing while also allowing to double the spatial frequency of optical axis modulation of diffractive waveplates.
Owner:BEAM ENG FOR ADVANCED MEASUREMENTS

Element-specific X-ray fluorescence microscope and method of operation

An element-specific imaging technique utilizes the element-specific fluorescence X-rays that are induced by primary ionizing radiation. The fluorescence X-rays from an element of interest are then preferentially imaged onto a detector using an optical train. The preferential imaging of the optical train is achieved using a chromatic lens in a suitably configured imaging system. A zone plate is an example of such a chromatic lens; its focal length is inversely proportional to the X-ray wavelength. Enhancement of preferential imaging of a given element in the test sample can be obtained if the zone plate lens itself is made of a compound containing substantially the same element. For example, when imaging copper using the Cu La spectral line, a copper zone plate lens is used. This enhances the preferential imaging of the zone plate lens because its diffraction efficiency (percent of incident energy diffracted into the focus) changes rapidly near an absorption line and can be made to peak at the X-ray fluorescence line of the element from which it is fabricated. In another embodiment, a spectral filter, such as a multilayer optic or crystal, is used in the optical train to achieve preferential imaging in a fluorescence microscope employing either a chromatic or an achromatic lens.
Owner:CARL ZEISS X RAY MICROSCOPY

Controlling haze in holographically polymerized polymer dispersed liquid crystal optical elements

Described herein are the materials, mechanisms and procedures for optimizing various performance parameters of HPDLC optical devices in order to meet differing performance requirements. These optimization tailoring techniques include control and independent optimization of switchable HPDLC optical devices to meet the demanding requirements of anticipated applications for, inter alia, the telecommunications and display industries. These techniques include optimization of diffraction efficiency, i.e., index modulation, polarization dependence control, haze, cosmetic quality, control of response and relaxation time, voltage driving for on and off switching, and material uniformity. This control and independent optimization tailors properties of switchable HPDLC optical devices according to the specific requirements of the application of the switchable HPDLC optical device. The invention disclosed herein retains the desirable attributes of the multi-functional acrylate system for forming HPDLC optical devices, but adds new materials to the acrylate system and / or new process control to the recording to optimize performance parameters as may be needed for specific applications. This results in high optical quality switchable holograms with good diffraction efficiency and low, stable switching voltage.
Owner:LEIDOS

Switchable volume hologram materials and devices

A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer, in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octanoic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved. The optional use of surfactant allows low switching voltages at lower frequencies than without surfactant. In an alternative embodiment, a PDLC material in accordance with the invention can be utilized to form reflection gratings, including switchable reflection gratings. In still further embodiments, a PDLC material in accordance with the invention can be used to form switchable subwavelength gratings. By further processing, static transmission reflection, and subwavelength PDLC materials can be formed.
Owner:LEIDOS

System for scatterometric measurements and applications

Instead of constructing a full multi-dimensional look up table as a model to find the critical dimension or other parameters in scatterometry, regression or other optimized estimation methods are employed starting from a “best guess” value of the parameter. Eigenvalues of models that are precalculated may be stored and reused later for other structures having certain common characteristics to save time. The scatterometric data that is used to find the value of the one or more parameter can be limited to those at wavelengths that are less sensitive to the underlying film characteristics. A model for a three-dimensional grating may be constructed by slicing a representative structure into a stack of slabs and creating an array of rectangular blocks to approximate each slab. One dimensional boundary problems may be solved for each block which are then matched to find a two-dimensional solution for the slab. A three-dimensional solution can then be constructed from the two-dimensional solutions for the slabs to yield the diffraction efficiencies of the three-dimensional grating. This model can then be used for finding the one or more parameters of the diffracting structure in scatterometry. Line roughness of a surface can be measured by directing a polarized incident beam in an incident plane normal to the line grating and measuring the cross-polarization coefficient. The value of the one or more parameters may then be supplied to a stepper or etcher to adjust a lithographic or etching process.
Owner:KLA TENCOR TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products