Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

220 results about "Spectrum shaping" patented technology

Audio signal encoder, audio signal decoder, method for encoding or decoding an audio signal using an aliasing-cancellation

An audio signal decoder includes a transform domain path configured to obtain a time-domain representation of a portion of an audio content on the basis of a first set of spectral coefficients, a representation of an aliasing-cancellation stimulus signal and a plurality of linear-prediction-domain parameters. The transform domain path applies a spectrum shaping to the first set of spectral coefficients to obtain a spectrally-shaped version thereof. The transform domain path obtains a time-domain representation of the audio content on the basis of the spectrally-shaped version of the first set of spectral coefficients. The transform domain path includes an aliasing-cancellation stimulus filter to filter the aliasing-cancellation stimulus signal in dependence on at least a subset of the linear-prediction-domain parameters. The transform domain path also includes a combiner configured to combine the time-domain representation of the audio content with an aliasing-cancellation synthesis signal to obtain an aliasing reduced time-domain signal.
Owner:FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG EV +3

Dielectric-coating structure reflecting mirror used for chirp pulse amplification optical spectrum shaping

The present invention relates to a chirp pulse amplifying spectrum shaping dielectric film structure reflector, which comprises a transparent substrate, a high reflectance film system, an anaglyph structure and an external protective layer. Wherein, the high reflectance film system is composed of a plurality of staggered dielectric films. A high reflectance film layer and a lower reflectance film layer of the high reflectance film closely contact the anaglyph structure. The anaglyph structure can take a plurality of shapes, such as a micro-lens high transparency film system structure, an air dielectric structure, a glass anaglyph structure or other transparent dielectric structures, including semiconductor structures. As a high-power laser chirp pulse with a plane wave structure vertically casts onto the reflector, the laser passes through the high reflectance film system and the anaglyph structure and all residual lasers are reflected to back of the reflector through the transparent substrate. Reflex intensity distribution is modulated to a needed spectrum distribution structure. The reflector of the present invention can be inserted into any place of an amplifier link and improve capacity to distinguish shaping spectrum chromatic dispersion to a certain level. Scope modulation exceeds 60% without changing phase position, thus adapting to PW devices.
Owner:SICHUAN UNIV +1

Time division multiplexing (TDM)-based low-reflectivity triangle spectrum-shaped fiber grating sensing system

The invention discloses a time division multiplexing (TDM)-based low-reflectivity triangle spectrum-shaped fiber grating sensing system. The system mainly comprises a distribution feedback laser, an electro-optical modulator, a circulator, an optical amplifier, a triangle spectrum-shaped fiber grating sensor, a high-speed optical detector, a pulse signal generator and a signal acquisition device, wherein the distribution feedback laser is used for emitting narrow line-width laser; pulse signal light is formed by the narrow line-width laser through the electro-optical modulator or is generated by internal modulation through the distribution feedback laser; the pulse light passes through the circulator and then is reflected by a triangle spectrum-shaped fiber grating; the reflected light passes through the circulator to enter the optical amplifier and is amplified into the high-speed optical detector; and a light signal is converted into an electrical signal through the high-speed optical detector, and the electrical signal is converted into a digital signal and is processed through the signal acquisition device. In the system, the distribution feedback laser and the low-reflectivity triangle spectrum-shaped fiber grating sensor are combined, a large-scale fiber grating sensing network is constructed through TDM, and thousands of sensors are multiplexed on a single fiber, so that the costs of a light source and a wavelength detection device are reduced.
Owner:WUHAN UNIV OF TECH

Power spectrum shaping to reduce interference effects in devices sharing a communication medium

A broadband digital communication network transmits a signal with a shaped power spectrum to minimize interference with devices that share the communication medium. In one embodiment using coaxial wiring, devices such as cable converters and televisions that are not part of the network share the communication medium and are exposed to the network signal. Power levels across the network band are selected to reduce interference in the non-networked devices. One area of susceptibility is the tuner of cable channel receivers, which perform mixing and down conversion of RF signals. The power spectrum profile is selected to minimize the IF and base band interference after down conversion. The spectrum can be shaped within each 6 MHz band to further minimize the interference with a TV signal. The power levels can be optimized for both peak power limitation and quantization effects.
Owner:ENTROPIC COMM INC

High-power broadband ASE (Amplified Spontaneous Emission) light source in 1064 nm waveband

The invention provides a high-power broadband ASE (Amplified Spontaneous Emission) light source in 1064 nm waveband, comprising a beam combiner, a section of YDF (Ytterbium Doped Fiber), an optical isolator, a fiber end cap, a semiconductor pump laser and a section of YDF in certain length. The invention is characterized in that: a light output end only needs to be welded with a small section of YDF in non-pumping state, the secondary absorption effect of the YDF on ASE optical signals is utilized, and an ASE spectrum shape is effectively processed and flatly outputted. An optical path box in which the YDF is wound is arranged on a temperature-controllable simple heating plate, the working temperature of the YDF is adjusted and controlled, the ASE spectrum shape is further outputted flatly, and the ASE light output spectrum bandwidth is effectively improved. Besides, in the non-output direction, the fiber end cap based on small-section multimode fiber grinding and coating manner is welded for restraining the light reflection on the end surface of the fiber, the laser output formed by self-oscillation is avoided, the pumping power is ensured to be improved, and meanwhile, the scale of ASE light output power is effectively improved.
Owner:SOUTH CHINA UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products