Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2891results about How to "Process environmental protection" patented technology

Fertilizer water-dispersion granule and preparation thereof

The invention relates to a fertilizer water dispersible granule and a method for preparing the same. The fertilizer water dispersible granule comprises one or more of plant nutrient substances and at least one surfactant which are processed to prepare the regular or irregular granular water dispersible granule. The fertilizer water dispersible granule consists of the following raw materials in portion by weight: 5 to 95 portions of the plant nutrient substance, 1 to 40 portions of the surfactant and 0 to 94 portions of an assistant. The invention has a preferential proposal: the plant nutrient substance comprises monopotassium phosphate, boric acid or borax, humic acid and salt thereof. The fertilizer water dispersible granule also comprises one or more of growth regulators. In addition, the fertilizer water dispersible granule can also comprise a disintegrating agent, an adhesive, a filler, a colorant and other assistants. The preparation method comprises: the metering, pulverization, even mixing, pelletization and drying of formula materials to obtain the fertilizer water dispersible granule. The fertilizer water dispersible granule has rapid disintegrating and dissolving (dispersing) speed in water, is fully dissolved, does not block a nozzle and a drop irrigation pipeline, is uneasy to absorb moisture, has high content of effective compositions, low packaging, storage, transportation, metering and use cost and high utilization rate of the effective compositions, reduces waste and environmental pollution, is widely applied to economic crop, gardening, lawn and urban greening and has extremely wide market application prospect.
Owner:SHENZHEN LANGTAI BIOTECH

Method of Biomolecule Immobilization On Polymers Using Click-Type Chemistry

The present invention provides a method for the covalent immobilization of biomolecules on polymers for delivery of the biomolecules, which has the advantage of being simple, highly efficient, environmentally friendly and free of side products relative to traditional immobilization techniques. The invention provides a modified micro/nanoparticle system, which uses a functionalized polymer formed into micro or nanoparticles to bind a molecule to the particles using uses facile chemistry, the Diels-Alder cycloaddition between a diene and a dienophile with the polymer being functionalized with one of them and the molecule with the other, or the Huisgen 1,3-dipolar cycloaddition between a terminal alkyne and an azide to bind the molecule to the particle. The molecules and/or other therapeutic agents may be encapsulated within the polymer particles for intravenous therapeutic delivery. The invention also provides a novel synthetic biodegradable polymer, a furan/alkyne-functionalized poly(trimethylene carbonate) (PTMC)-based polymer, whose composition can be designed to meet the defined physical and chemical property requirements. In one example, the particle system self-aggregates from functionalized PTMC-based copolymers containing poly(ethylene glycol) (PEG) segments. The composition of the copolymers can be designed to meet various particle system requirements, including size, thermodynamic stability, surface PEG density, drug encapsulation capacity and biomolecule immobilization capacity.
Owner:SHOICHET MOLLY S +2

Lutein ester microcapsule powder and preparation method thereof

The invention discloses lutein ester microcapsule powder and a preparation method thereof. The preparation method comprises the following steps of: preparing an oil phase solution and a water phase solution respectively, and mixing and emulsifying the oil phase solution and the water phase solution; and non-water raw materials comprise the following components in part by weight: 1 part of lutein ester crystal, 0.05 to 0.1 part of oil phase antioxidant, 0.02 to 0.1 part of oil phase emulsifying agent, 0.05 to 1 part of plant oil, 0.5 to 25 parts of wall material, 0.1 to 0.5 part of water phaseemulsifying agent, 0.05 to 1 part of water phase antioxidant, and the balance of filler. In the preparation method for the lutein ester microcapsule powder, the oil-soluble lutein ester is fully dispersed in cold water in the form of sub nanometer particles, and the product can be self-emulsified in water, and is good in instant capacity and self-emulsification capacity, and high in stability, and has uniform and durable color; and the phenomena of oil floating, precipitation, adhesion to a bottle wall and the like are avoided during application. Organic solvents are not introduced in the powder, so solvent residues are avoided in the product. The production process is environment-friendly, simple and practicable, expensive equipment is not needed, and the microcapsule powder can be industrially produced easily and conveniently.
Owner:INNOBIO CORP LTD

Power converter motor drive btb system and system linking inverter system

The invention provides a bidirectional power converter, that can be connected directly to an AC system without interposing a transformer, that is small in size, light in weight, inexpensive to manufacture, and capable of regenerative operation, and also provides a motor drive equipped with such a power converter and a BTB system and a grid-linking inverter system each comprising such a power converter. The power converter comprises converter cells each comprising: a first AC/DC converter which performs bidirectional power conversion between single-phase AC power and DC power; a second AC/DC converter whose DC side is connected to the DC side of the first AC/DC converter, and which performs bidirectional power conversion between single-phase AC power and DC power; a third AC/DC converter which performs bidirectional power conversion between single-phase AC power and DC power; and a high-frequency transformer which is connected between the AC side of the second AC/DC converter and the AC side of the third AC/DC converter. If the power converter 1 is an AC-input/AC-output type, the power converter further comprises a fourth AC/DC converter which is connected to the DC side of the third AC/DC converter, and which performs bidirectional power conversion between single-phase AC power and DC power.
Owner:CIRCLE FOR THE PROMOTION OF SCI & ENG THE

Three-dimensional compound structure based on three-dimensional MXene and general synthesis method thereof

The invention discloses a general synthesis method of a three-dimensional compound structure based on three-dimensional MXene, and belongs to the field of nano materials. The three-dimensional compound structure is composed of a three-dimensional MXene load inorganic nano structure and is of a flower-like hierarchical porous structure. The method comprises the steps that an ultrasonic atomizer isadopted for atomizing mixed suspension liquid of three-dimensional MXene particles, metal salt and an auxiliary into aerosol micro-droplets, and under inert or reactive atmosphere, high-temperature fast drying is conducted to obtain the three-dimensional compound structure with controllable structure and size; or the three-dimensional MXene particles and metal salt or a nonmetallic compound are evenly mixed in solvent or in a solid-phase mode to obtain a mixture, and high-temperature calcination is conducted under the inert or reactive atmosphere to obtain the three-dimensional compound structure with controllable structure and size. By means of the three-dimensional compound structure based on the three-dimensional MXene, the problems of inorganic nano material particle aggregation, poorconductivity and two-dimensional MXene stacking can be solved, and thus a foundation is laid for preparation, processing and various aspects of application of a MXene-based high-performance functionalmaterial.
Owner:DALIAN UNIV OF TECH

Method for separating vanadium-titanium magnetite to extract iron, vanadium and titanium

The invention discloses a method for separating vanadium-titanium magnetite to extract iron, vanadium and titanium, comprising the following steps of: magnetically selecting raw magnetite, that is, acquiring iron-vanadium concentrate and tail magnetite after performing magnetic selection on the vanadium-titanium magnetite; sorting titanium concentrate from the tail magnetite, that is, acquiring the titanium concentrate after performing floating selection on the obtained tail magnetite; roasting and magnetically selecting the titanium concentrate, that is, performing enriched-titanium impurity-removing magnetic selection after roasting the titanium concentrate; finely selecting the iron-vanadium concentrate, that is, performing the magnetic selection and fine section again on the iron-vanadium concentrate obtained from magnetic selection; reducing and smelting, that is, mixing the titanium concentrate obtained from the impurity-removing process with the iron concentrate according to the beneficiation yield, adding in a reducer and soda ash to perform reduced iron and vanadium smelting process; purifying vanadium slag, that is, removing the impurity of the vanadium slag obtained by reducing and smelting by using the acidic dipping to obtain the high-quality titanium slag product with the content of TiO2 larger than 92%; and extracting vanadium from pig iron, that is, performing vanadium extraction by converter blowing on the vanadium-containing pig iron obtained by reducing and smelting to obtain the semi-steel and vanadium slag. The method not only improves the utilization ratio of titanium, iron and vanadium but also obtains the high-titanium slag product with the content of TiO2 larger than 92% so as to widen the application field of titanium.
Owner:INST OF MULTIPURPOSE UTILIZATION OF MINERAL RESOURCES CHINESE ACAD OF GEOLOGICAL SCI

Pyroelectric sensor

A ferroelectric/pyroelectric sensor employs a technique for determining a charge output of a ferroelectric scene element of the sensor by measuring the hysteresis loop output of the scene element several times during a particular time frame for the same temperature. An external AC signal is applied to the ferroelectric scene element to cause the hysteresis loop output from the element to switch polarization. Charge integration circuitry, such as a combination output capacitor and operational amplifier, is employed to measure the charge from the scene element. Preferably, the ferroelectric of the scene element is made of an economical and responsive strontium bismuth tantalate, SBT, or derivative thereof, disposed directly between top and bottom electrodes. Because of the frequency characteristics of the sensor, created by the external AC signal, the element need not be thermally isolated from the silicon substrate by a traditional air bridge, which is difficult to manufacture, and instead is preferably thermally isolated by spin-on-glass, SOG. To prevent saturation of an output signal voltage of the sensor by excessive charge accumulation in an output capacitor, the sensor preferably has a reference element configured electrically in parallel with the scene element. When the voltage of the AC signal is negative the output capacitor is discharged by flowing current through the reference element thus interrogating the polarization of the reference element which is compared to and subtracted from the polarization of the scene element for each cycle. The polarization difference measured for each cycle over a set time period are summed by an integrating amplifier to produce a signal output voltage.
Owner:APTIV TECH LTD +1

Titanium dioxide and graphene oxide composite nano-grade sheet material and preparation method thereof

ActiveCN102492313AThickness is continuously controllableMeet different requirements of thicknessPigment physical treatmentOxide compositeVacuum drying
The invention relates to a titanium dioxide and graphene oxide composite nano-grade sheet material and a preparation method thereof. A structural layer of the titanium dioxide and graphene oxide composite nano-grade sheet comprises a graphene oxide layer, and two titanium dioxide layers respectively positioned on the upper and lower sides of the graphene oxide layer. The preparation method comprises steps that: step 1, graphene oxide is subject to ultrasonic oscillation under a normal temperature, such that graphene oxide is uniformly dispersed in distilled water, and a graphene oxide dispersed liquid is obtained; step 2, the graphene oxide dispersed liquid is diluted by using absolute alcohol; step 3, a proper amount of tetrabutyl titanate is dissolved in absolute alcohol, such that an alcohol solution of tetrabutyl titanate is obtained; step 4, the alcohol solution of tetrabutyl titanate with a different concentration is gradually dropped into the alcohol diluent of graphene oxide with a temperature of 20-60 DEG C while stirring; step 5, a reaction is carried out, such that a dispersed liquid of an amorphous titanium dioxide and graphene oxide composite nano-grade sheet materialis obtained; step 6, the dispersed liquid is subject to centrifugal washing by using distilled water and absolute alcohol, and is subject to normal-temperature vacuum drying, such that powder is obtained. The powder is the amorphous titanium dioxide and graphene oxide composite nano-grade sheet material obtained with the initial reaction.
Owner:SICHUAN UNIV +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products