Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

484results about "Titanium carbide" patented technology

Preparation method of surface organic modified titanium carbide nanosheet

The invention relates to a preparation method of a surface organic modified titanium carbide nanosheet, belonging to the technical field of preparation of nano materials. The preparation method comprises the following steps: etching an aluminum atom layer in titanium aluminum carbide by virtue of a mixed solution of lithium fluoride and hydrochloric acid so as to prepare titanium carbide precipitates, re-dispersing the titanium carbide precipitates into water, carrying out ultrasonic treatment and centrifugation so as to remove precipitates, and extracting supernatant liquid, so as to obtain titanium carbide nanosheet suspension liquid; and finally adding a surfactant water solution to react, so as to obtain the surface organic modified titanium carbide nanosheet. Compared with a method for etching titanium aluminum carbide by virtue of hydrofluoric acid, the method for preparing titanium carbide by etching the aluminum atom layer in titanium aluminum carbide by virtue of the mixed solution of lithium fluoride and hydrochloric acid has the advantages that the corrosivity is reduced, and the operation safety is improved; and the surface organic modified titanium carbide nanosheet prepared by virtue of the preparation method has relatively high surface activity and heat stability, has good compatibility with high-molecular materials and can be uniformly dispersed into the high-molecular materials, so that the mechanical properties, flame retardance and thermal properties of the high-molecular materials are improved.
Owner:HEFEI UNIV

MXene-polyaniline composite material and preparation method thereof

ActiveCN106750277ASolve the technical problem of poor microwave absorption performance of MXeneTitanium carbidePolyaniline compositeSOLUTION/DROPS
The invention provides an MXene-polyaniline composite material and a preparation method thereof, relates to a preparation method of the MXene-polyaniline composite material and aims to solve the technical problem of poor wave absorbing performance of the conventional two-dimensional transition metal carbide MXene. The MXene-polyaniline composite material comprises laminated two-dimensional transition metal carbide and a polyaniline shell coating the surface of the two-dimensional transition metal carbide. The preparation method comprises the following steps: aniline is added to water and stirred, an aniline/water dispersion liquid is obtained, the pH value is regulated to 1.5-2, and a hydrochloride solution of aniline is obtained; the hydrochloride solution of aniline is added to the water dispersion liquid of the two-dimensional transition metal carbide and is stirred and mixed at a low temperature, and an MXene-aniline mixed solution is obtained; an ammonium persulfate solution is added dropwise to the MXene-aniline mixed solution, the mixture is subjected to a stirring reaction at a low temperature, a product is washed and dried, and the MXene-polyaniline composite material is obtained. The MXene-polyaniline composite material can be applied to the field of wave absorption.
Owner:HARBIN INST OF TECH

Composite material of sub-group metals compounded with MXenes and preparation method and application of composite material

The invention discloses a composite material of sub-group metals compounded with MXenes and a preparation method of the composite material. The composite material of sub-group metals compounded with MXenes is prepared from MXenes materials and sub-group metals, wherein the surfaces of the MXenes materials are coated with the sub-group metals in situ, and the sub-group metals are also distributed among layers of the MXenes materials. The preparation method comprises the following steps: grinding precursor Mn+1AXn-phase materials, sub-group metal salts and inorganic salts for 5-60min by adoptinga molten salt method, enabling the obtained mixture to react for 1-48h at 300-800 DEG C in inert atmosphere, and then, performing post-treatment to obtain the composite material of the sub-group metals compounded with the MXenes. The composite material disclosed by the invention has the advantages of adjustable and uniform components, low cost, environmental protection, high efficiency and the like, and has application prospects in the fields of electrode materials for electrochemical energy storage, wave absorption materials, electromagnetic shielding materials, catalysts and the like.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

Composite nanostructure based on three-dimensional porous transition metal carbide Ti3C2MXene and general preparation method thereof

The invention discloses a composite nanostructure based on a three-dimensional porous transition metal carbide Ti3C2MXene and a general preparation method thereof, and belongs to the field of nanomaterials. The three-dimensional composite structure is composed of a three-dimensional porous Mxene-supported inorganic nanostructure, and has a honeycomb hierarchical porous structure. A precursor of atwo-dimensional transition metal carbide and a metal-organic framework compound is subjected to high-temperature pyrolysis or a chemical reaction in an inert or reactive atmosphere to prepare the composite nanostructure with a controllable size. According to the composite nanostructure, stacking of MXene itself is inhibited, an active surface area, porosity, and ion permeability of MXene are increased, and thereby a surface interface of MXene is efficiently used. At the same time, introduction of the metal-organic framework compound realizes uniform and stable compounding of the three-dimensional porous MXene and an inorganic nanomaterial, the fundamental difficult problem that plagues exerting and application of inorganic nanomaterial performance is solved, and the composite nanostructurehas wide application prospects in the fields such as catalysis, energy, photo-electricity, space technology, and military industry.
Owner:DALIAN UNIV OF TECH

Titanium carbide powder and preparation method thereof

The invention specifically relates to titanium carbide powder and a preparation method thereof. According to a technical scheme, the preparation method comprises the following steps of: uniformly mixing 10-25 percent by weight of aluminum powder or magnesium powder, 0.5-2 percent of amorphous graphite powder or carbon black, 5-20 percent by weight of titanium dioxide and 60-80 percent by weight of a halide of lithium serving as raw materials; putting the uniformly-mixed raw materials into a tubular electric furnace, raising the temperature to 900-1,100 DEG C at the temperature raising rate of 2-8 DEG C per minute under the atmosphere of argon, and preserving heat for 1-5 hours; putting an obtained product into hydrochloric acid of which the concentration is 2-4 mol/L for soaking for 3-6 hours, filtering, and cleaning with deionized water till the pH value of a cleaning solution is 7.0; and drying at the temperature of 110 DEG C for 10-24 hours to obtain titanium carbide powder. The method has the characteristics of low reaction temperature, simple process, controllable synthesis process, low production cost, and the like; and the prepared titanium carbide powder has the characteristics of high crystallization, high product purity, freeness from an impure phase and powder particle size of 100-400 nanometers.
Owner:WUHAN UNIV OF SCI & TECH

Metal-based composite material as well as preparation method and application thereof

The invention relates to a metal-based composite material which comprises a metal substrate and an MXene material membrane layer, wherein the MXene material membrane layer is arranged on the bottom surface of the metal substrate in a wrapping layer and is of a structural formula Mn+1Xn(Ts); an MXene material is prepared by removing A from a compound of a structural formula Mn+1AXn; in the formula,M, A and X are respectively three different elements; n is a positive integer; Ts is an end sealing group on the surface of the MXene material. The surface of the metal-based composite material provided by the invention is uniformly wrapped with the MXene material membrane layer, the number of sheet layers of the MXene material is only 1-15, the wrapping thickness is smaller than 250 nm, the thickness is uniform, the wrapped surface is smooth and flat, surface defects can be avoided, and the corrosion velocity of the obtained metal-based composite material is very low, that is, is only about0.06% of that of a conventional metal substrate; the invention further discloses a novel method for preparing the metal-based composite material, and by adopting the method, no complex instrument equipment is needed, and the metal-based composite material can be conveniently and rapidly prepared.
Owner:INST OF PROCESS ENG CHINESE ACAD OF SCI

Method for preparing laminar MXenes material by utilizing ternary MAX material

The invention provides a method for preparing a laminar MXenes material by utilizing a ternary MAX material. The method comprises the following steps: taking strong acid or strong alkali as corrosionliquid and putting the corrosion liquid into a reaction container; putting MAX powder into the corrosion liquid; then adding soluble mixed salt while stirring; continuously corroding for 0.5 to 48h; then centrifuging and separating; washing and drying to obtain the laminar MXenes material. According to the method provided by the invention, the soluble mixed salt of metal with metal activity whichis weaker than that of layer-A metal is added into the corrosion liquid by utilizing a galvanic battery principle, so that the soluble mixed salt is reduced by the layer-A metal to obtain the metal with the metal activity which is weaker than that of the layer-A metal; the metal is combined with the layer-A metal to form a corroded couple; reaction is promoted to be carried out rightward and the corrosion of the layer-A metal is accelerated, so that a single-layer two-dimensional nano material which is completely peeled and corroded is obtained. The method is simple and has strong operabilityand a good realization result; the MXenes material, which has a relatively high peeling degree and a relatively good microcosmic shape, can be obtained.
Owner:SHAANXI UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products