Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

872results about "Silicon carbide" patented technology

NANO silicon-carbon composite material and preparation method thereof

The invention relates to a nano silicon-carbon composite negative material for lithium ion batteries and a preparation method thereof. A porous electrode composed of silica and carbon is taken as a raw material, and a nano silicon-carbon composite material of carbon-loaded nano silicon is formed by a molten salt electrolysis method in a manner of silica in-situ electrochemical reduction. Silicon and carbon of the material are connected by nano silicon carbide, and are metallurgical-grade combination, so that the electrochemical cycle stability of the nano silicon-carbon composite material is improved. The preparation method of the nano silicon-carbon composite material provided by the invention comprises the following steps: compounding a porous block composed of carbon and silica powder with a conductive cathode collector as a cathode; using graphite or an inert anode as an anode, and putting the cathode and anode into CaCl2 electrolyte or mixed salt melt electrolyte containing CaCl2 to form an electrolytic cell; applying voltage between the cathode and the anode; controlling the electrolytic voltage, the electrolytic current density and the electrolytic quantity, so that silica in the porous block is deoxidized into nano silicon by electrolytic reduction, and the nano silicon-carbon composite material for lithium ion batteries is prepared at the cathode.
Owner:CHINA AUTOMOTIVE BATTERY RES INST CO LTD

Process for the preparation of metal carbides having a large specific surface from activated carbon foams

The invention relates to a silicon carbide or metal carbide foam to be used as a catalyst or catalyst support for the chemical or petrochemical industry or for silencers, as well as the process for producing the same.The foam is in the form of a three-dimensional network of interconnected cages, whose edge length is between 50 and 500 micrometres, whose density is between 0.03 and 0.1 g / cm3 and whose BET surface is between 20 and 100 m2 / g. The carbide foam contains no more than 0.1% by weight residual metal and the size of the carbide crystallites is between 40 and 400 Angstroms.The production process consists of starting with a carbon foam, increasing its specific surface by an activation treatment using carbon dioxide and then contacting the thus activated foam with a volatile compound of the metal, whose carbide it is wished to obtain.
Owner:CENT NAT DE LA RECHERCHE SCI

Method of forming stable functionalized nanoparticles

ActiveUS7883995B2Stable and functionalized nanoparticlesStable functionalized nanoparticlesMaterial nanotechnologySiliconHigh energyFunctionalized nanoparticles
A novel top-down procedure for synthesis of stable passivated nanoparticles uses a one-step mechanochemical process to form and passivate the nanoparticles. High-energy ball milling (HEBM) can advantageously be used to mechanically reduce the size of material to nanoparticles. When the reduction of size occurs in a reactive medium, the passivation of the nanoparticles occurs as the nanoparticles are formed. This results in stable passivated silicon nanoparticles. This procedure can be used, for example in the synthesis of stable alkyl- or alkenyl-passivated silicon and germanium nanoparticles. The covalent bonds between the silicon or germanium and the carbon in the reactive medium create very stable nanoparticles.
Owner:THE ADMINISTRATORS OF THE TULANE EDUCATIONAL FUND

Turbulent mixing aerosol nanoparticle reactor and method of operating the same

A nanoparticle reactor comprises a nucleation and core growth region providing a laminar flow of reactants in which the reactants thermally decompose to produce a supersaturated vapor that nucleates aerosol particles into particle cores. Nozzle(s) turbulently mix a preheated diluent into the heated reactants. The mixed preheated diluent and heated reactants flow into a core densification region where particle growth is quenched, coagulation limited and sufficient thermal energy for densification of the cores of the particles is provided. Nozzles turbulently mix a preheated additional reactant. A jet and chemical injection and layer formation region is used to develop the particle cores.
Owner:CALIFORNIA INST OF TECH

Method of Producing Carbon Nanomaterials and Centrifugal Melt Spinning Apparatus

A carbon nanomaterial produced by: performing centrifugal melt spinning of core-shell particles that are prepared by using fine particles containing a carbon precursor polymer and a thermally decomposable polymer that disappears as a result of heat treatment, wherein the core-shell particles are heated up to a temperature at which phase separation thereof is not caused, and pressed against a plate-like heater 12 having a large number of pores 12A that penetrate therethrough in a thickness direction of the plate-like heater using centrifugal force; making the fiber obtained by the centrifugal melt spinning infusible; and performing carbonization thereof. According to this method, a carbon nanomaterial such as a carbon nanotube or a carbon nanofiber can be produced with high efficiency.
Owner:GUNMA UNIVERSITY

Articles for high temperature service and methods for their manufacture

An article for use in aggressive environments is presented. In one embodiment, the article comprises a substrate and a self-sealing and substantially hermetic sealing layer comprising an alkaline-earth aluminosilicate disposed over the bondcoat. The substrate may be any high-temperature material, including, for instance, silicon-bearing ceramics and ceramic matrix composites. A method for making such articles is also presented. The method comprises providing a substrate; disposing a self-sealing alkaline-earth aluminosilicate layer over the substrate; and heating the sealing layer to a sealing temperature at which at least a portion of the sealing layer will flow.
Owner:GENERAL ELECTRIC CO

Cathode current collector, and preparation method and application of cathode current collector

The invention discloses a cathode current collector, and a preparation method and an application of the cathode current collector. The cathode current collector is in a multilayer structure, and comprises a plastic film, wherein the upper and lower surfaces of the plastic film are sequentially coated with bonding force reinforcement layers, copper coating layers and antioxidation layers. The preparation method comprises the steps of coating the bonding force reinforcement layers on the plastic film by utilizing a magnetron sputtering coating technology, coating the copper coating layers by utilizing an evaporation coating technology, and coating the antioxidation layers by utilizing an electron beam evaporation coating technology or the magnetron sputtering coating technology. The application of the cathode current collector is mainly in a lithium ion battery. The cathode current collector can realize lightweighting of the battery, improves the energy density, lowers the cost, and can reduce the possibility of falling and oxidation of the copper coating layers.
Owner:CONTEMPORARY AMPEREX TECH CO

Method for preparing functional nanomaterials utilizing endothermic reaction

A method is disclosed whereby a functional nanomaterial such as a monolayer carbon nanotube, a monolayer boron nitride nanotube, a monolayer silicon carbide nanotube, a multilayer carbon nanotube with the number of layers controlled, a multilayer boron nitride nanotube with the number of layers controlled, a multilayer silicon carbide nanotube with the number of layers controlled, a metal containing fullerene, and a metal containing fullerene with the number of layers controlled is produced at a high yield. According to the method, when a multilayer carbon nanotube (3) is formed by a chemical vapor deposition or a liquid phase growth process, an endothermic reaction aid (H2S) is introduced in addition to a primary reactant (CH4, H2) in the process to form a monolayer carbon nanotube (4).
Owner:JAPAN SCI & TECH CORP

High strength ceramic fibers and methods of fabrication

A method and apparatus for forming a plurality of fibers from (e.g., CVD) precursors, including a reactor adapted to grow a plurality of individual fibers; and a plurality of independently controllable lasers, each laser of the plurality of lasers growing a respective fiber. A high performance fiber (HPF) structure, including a plurality of fibers arranged in the structure; a matrix disposed between the fibers; wherein a multilayer coating is provided along the surfaces of at least some of the fibers with an inner layer region having a sheet-like strength; and an outer layer region, having a particle-like strength, such that any cracks propagating toward the outer layer from the matrix propagate along the outer layer and back into the matrix, thereby preventing the cracks from approaching the fibers. A method of forming an interphase in a ceramic matrix composite material having a plurality of SiC fibers, which maximizes toughness by minimizing fiber to fiber bridging, including arranging a plurality of SiC fibers into a preform; selectively removing (e.g., etching) silicon out of the surface of the fibers resulting in a porous carbon layer on the fibers; and replacing the porous carbon layer with an interphase layer (e.g., Boron Nitride), which coats the fibers to thereby minimize fiber to fiber bridging in the preform.
Owner:FREE FORM FIBERS LLC

Ceramic impregnated superabrasives

A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the poes are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.
Owner:RADTKE ROBERT P +1

Production of ultrafine metal carbide particles utilizing polymeric feed materials

The production of ultrafine metal carbide powders from polymeric powder and metallic precursor powder starting materials is disclosed. In certain embodiments, the polymeric powder may comprise polypropylene, polyethylene, polystyrene, polyester, polybutylene, nylon, polymethylpentene and the like. The metal precursor powder may comprise pure metals, metal alloys, intermetallics and / or metal-containing compounds such as metal oxides and nitrides. In one embodiment, the metal precursor powder comprises a silicon-containing material, and the ultrafine powders comprise SiC. The polymeric and metal precursor powders are fed together or separately to a plasma system where the feed materials react to form metal carbides in the form of ultrafine particles.
Owner:PPG IND OHIO INC

Method for synthesizing ultrahigh-purity silicon carbide

Adsorbed gaseous species and elements in a carbon (C) powder and a graphite crucible are reduced by way of a vacuum and an elevated temperature sufficient to cause reduction. A wall and at least one end of an interior of the crucible is lined with C powder purified in the above manner. An Si+C mixture is formed with C powder purified in the above manner and Si powder or granules. The lined crucible is charged with the Si+C mixture. Adsorbed gaseous species and elements are reduced from the Si+C mixture and the crucible by way of a vacuum and an elevated temperature that is sufficient to cause reduction but which does not exceed the melting point of Si. Thereafter, by way of a vacuum and an elevated temperature, the Si+C mixture is caused to react and form polycrystalline SiC.
Owner:II VI

Composition and method for making silicon-containing products

Silicon-containing products, such as silicon, silicon carbide and silicon nitride, containing less than 0.01 weight percent total mineral impurities and selectively determined carbon-to-silicon ratios. The products are derived from plant matter, such as rice hulls and rice straw, containing at least three weight percent silica. Methods are provided for making such high purity silicon-containing products by leaching silica-containing plant matter with aqueous sulfuric acid under controlled temperatures, pressures and reaction times to remove minerals and metals while adjusting the mole ratio of fixed carbon to silica, and then thermally treating under controlled conditions to produce the desired product.
Owner:SI OPTIONS LLC

Additive manufacturing of metal alloys and metal alloy matrix composites

An additive manufacturing method of producing a metal alloy article may involve: Providing a supply of a metal alloy in powder form; providing a supply of a nucleant material, the nucleant material lowering the nucleation energy required to crystallize the metal alloy; blending the supply of metal alloy powder and nucleant material to form a blended mixture; forming the blended mixture into a first layer; subjecting at least a portion of the first layer to energy sufficient to raise the temperature of the first layer to at least the liquidus temperature of the metal alloy; allowing at least a portion of the first layer to cool to a temperature sufficient to allow the metal alloy to recrystallize; forming a second layer of the blended mixture on the first layer; and repeating the subjecting and allowing steps on the second layer to form an additional portion of the metal alloy article.
Owner:ELEMENTUM 3D INC

Methods for the production of ultrafine metal carbide particles and hydrogen

A method for producing ultrafine metal carbide particles and hydrogen is disclosed. The method includes introducing a metal-containing precursor and a carbon-containing precursor into a thermal reaction chamber, heating the precursors in the thermal reaction chamber to form the ultrafine metal carbide particles from the precursors and to form carbon monoxide and hydrogen, collecting the ultrafine doped metal carbide particles, converting at least a portion of the carbon monoxide to carbon dioxide and generating additional hydrogen, and recovering at least a portion of the hydrogen.
Owner:PPG IND OHIO INC

Composition and method for making silicon-containing products

A method for producing carbon-silica products from silica-containing plant matter such as rice hulls or straw by leaching with sulfuric acid to remove non-silica minerals and metal while adjusting the mole ratio of fixed carbon to silica in the resultant product. The carbon and silica are intimately mixed on a micron or submicron scale and are characterized by high purity and reactivity, small particle size, high porosity, and contain volatile carbon that can be used as a source of energy for the production of silicon-containing products from the carbon-silica products. High purity silicon-containing products made from the carbon-silica products of the invention are also disclosed.
Owner:SI OPTIONS LLC

High Purity Silicon-Containing Products and Method of Manufacture

Silicon-containing products, such as silicon, silicon carbide and silicon nitride, containing less than 0.01 weight percent total mineral impurities and selectively determined carbon-to-silicon ratios. The products are derived from plant matter, such as rice hulls and rice straw, containing at least three weight percent silica. Methods are provided for making such high purity silicon-containing products by leaching silica-containing plant matter with aqueous sulfuric acid under controlled temperatures, pressures and reaction times to remove minerals and metals while adjusting the mole ratio of fixed carbon to silica, and then thermally treating under controlled conditions to produce the desired product.
Owner:SI OPTIONS LLC

Preparation method of silicon carbide aerogel on basis of SiO2 aerogel as template

The invention discloses a preparation method of a silicon carbide aerogel on the basis of a SiO2 aerogel as a template. The method is characterized in that the method comprises the following steps: preparing the SiO2 aerogel, adding a carbon material or a carbonaceous compound into the pores of the SiO2 aerogel, preparing and preparing a silicon carbide aerogel through a carbon thermal reduction process, or adding the prepared SiO2 aerogel into the carbon material to prepare a SiO2 aerogel composite material, and preparing the silicon carbide aerogel through carbon thermal reduction; removing residual impurities in the silicon carbide aerogel by using a nitric acid and sulfuric acid mixed liquid; and removing superfluous SiO2 by using sodium hydroxide, and removing silicon by using hydrofluoric acid.
Owner:HENAN UNIVERSITY OF TECHNOLOGY

Preparation method of SiC nanowire with expandable graphite as carbon source

The invention discloses a preparation method of SiC nanowire with expandable graphite as a carbon source. The expandable graphite is used as the carbon source, silicon powder and silica powder are used as a silicon source, or TEOS (tetraethoxysilane) is used as the silicon source. The TEOS is dissolved in absolute ethanol. And oxalic acid is added to accelerate the hydrolysis of TEOS. After drying, the carbon source and silicon source are mixed and grinded evenly, to be placed in a graphite crucible and then placed in a high-temperature-atmosphere box-type furnace and evacuated and filled with protective gas. The temperature is heated to 1300-1800 DEG C and the mixture is subjected to heat preservation and sintering for 2 hours. The pressure of the furnace is lower than 1MPa during the whole preparation process. After natural cooling is carried out on the furnace to the room temperature, the SiC nanowire is obtained. Themethod provided by the invention has characteristics of being cheap in raw material, simple in process, free of harmful gas polluting the environment, no requirement of any catalyst and large scale and high yield, which is suitable for industrial production of SiC nanowire.
Owner:ZHEJIANG SCI-TECH UNIV

Preparation method of fibrous nano silicon carbide

InactiveCN103496703APlay the role of "template"High yieldMaterial nanotechnologySilicon carbideFiberRocket
The invention discloses a preparation method of fibrous nano silicon carbide. The preparation method is characterized by comprising the following steps: taking a carbon source and chrysotile asbestos of which the main chemical ingredient is silicon dioxide according to the molar ratio of carbon to silicon dioxide being (0.3-3):1; separately grinding the carbon source and chrysotile asbestos, evenly mixing to obtain a mixture; putting the mixture into a reaction device, vacuumizing, and continuously introducing argon in the reaction device; heating to 1350-2500 DEG C and carrying out thermal reaction for 0.2-6 hours; cooling to room temperature, stopping introduction of argon; collecting the reduction product, and grinding into fine powder which is the fibrous nano silicon carbide powder product. The preparation method has the advantages that raw materials are easily availably and equipment and technology are simple; moreover, the preparation method is friendly to environment and high in productivity. The prepared fibrous nano silicon carbide has good performances, can be widely applied to high-tech equipments such as nose cones of space shuttles, brakes of airplanes and racing bicycles, rocket nozzles, satellite antennas, guided missiles and the like, and also has broad use in nanometer microsystems.
Owner:SOUTHWEAT UNIV OF SCI & TECH

Methods for synthesizing submicron doped silicon particles

Methods are described that have the capability of producing submicron / nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and / or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron / nanoscale particles.
Owner:NANOGRAM

Stiochiometric silicon carbide fibers from thermo-chemically cured polysilazanes

A novel polycrystalline stoichiometric fine SiC fiber substantially free of impurities is produced using a novel pre-ceramic polymer. The pre-ceramic polymer is prepared by reacting a mixture of chlorodisilane, boron trichloride, and a vinyl chlorodisilane with an excess of hexamethyldisilazane to form the pre-ceramic polymer resin, which may then be melt-spun, cured, pyrolyzed and heat-treated to obtain the finished SiC fiber. The manufacturing process for the production of the fine SiC ceramic fiber allows for flexibility with respect to cross-linking, in that low-cost thermal treatments may replace more complex methods, while obtaining fibers with improved materials properties as compared to currently available SiC fibers.
Owner:GENERAL ELECTRIC CO

Method of producing nanometer silicon carbide material

InactiveUS20040202599A1Simpler and cheap for producingCheap methodMaterial nanotechnologySilicon carbideElectron sourceNanowire
This invention relates to a method for preparing nanometer SiC material using nanometer-grade or micron-grade commercial SiC with different shapes, sizes as raw material. The raw materials and catalysts are put into heating device, which is pumped beforehand. Inert gas is let into the heating device as protective gas. The materials and catalysts then will be heated to temperature of 1300~2000° C., and the temperature preserved for a certain period. The nanorod or nanowire produced can be used in the research and development for SiC photoelectric devices, especially for nanometer photoelectric devices and field emission electron sources. This method features simple operation, low cost, and high yield.
Owner:XU NINGSHENG +3

Negative active material for rechargeable lithium battery and rechargeable lithium battery

A negative active material for a rechargeable lithium battery and a rechargeable lithium battery including the same. The active material includes a silicon-containing compound represented by the following Chemical Formula 1 where Si exists with a concentration gradient from the surface to the center of the negative active material:SiCx  [Chemical Formula 1]where 1, 0.05≦x≦1.5.
Owner:SAMSUNG SDI CO LTD

Sublimation growth of sic single crystals

In SiC sublimation crystal growth, a crucible is charged with SiC source material and SiC seed crystal in spaced relation and a baffle is disposed in the growth crucible around the seed crystal. A first side of the baffle in the growth crucible defines a growth zone where a SiC single crystal grows on the SiC seed crystal. A second side of the baffle in the growth crucible defines a vapor-capture trap around the SiC seed crystal. The growth crucible is heated to a SiC growth temperature whereupon the SiC source material sublimates and forms a vapor which is transported to the growth zone where the SiC crystal grows by precipitation of the vapor on the SiC seed crystal. A fraction of this vapor enters the vapor-capture trap where it is removed from the growth zone during growth of the SiC crystal.
Owner:II VI

Metal carbides and process for producing same

A metal carbide composition and a process for synthesizing metal carbides, through a single step process, wherein oxides of different metals, including, but not limited to Si, Ti, W, Hf, Zr, V, Cr, Ta, B, Nb, Al, Mn, Ni, Fe, Co, and Mo were physically mixed with spherical or filamentateous nano structured carbon, and inductively heated to a certain temperature range (900-1900° C.) where the metal oxide reacts with carbon to form different metal carbides. The process retains the original morphology of the starting carbon precursor in the resultant metal carbides. This method also produces highly crystalline metal nano-carbides. The metal carbide products would have applications in high temperature thermoelectric devices, quantum wells, optoelectronic devices, semi-conductors, body armour, vehicle armour, catalysts, and as discontinuous reinforced agents in metal such as aluminum and other alloys.
Owner:COLUMBIAN CHEM CO

Method of forming stable functionalized nanoparticles

ActiveUS20090047773A1Stable and functionalizedStable and functionalized nanoparticlesMaterial nanotechnologySiliconHigh energyNanometre
A novel top-down procedure for synthesis of stable passivated nanoparticles uses a one-step mechanochemical process to form and passivate the nanoparticles. High-energy ball milling (HEBM) can advantageously be used to mechanically reduce the size of material to nanoparticles. When the reduction of size occurs in a reactive medium, the passivation of the nanoparticles occurs as the nanoparticles are formed. This results in stable passivated silicon nanoparticles. This procedure can be used, for example in the synthesis of stable alkyl- or alkenyl-passivated silicon and germanium nanoparticles. The covalent bonds between the silicon or germanium and the carbon in the reactive medium create very stable nanoparticles.
Owner:TULANE EDUCATIONAL FUND
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products