Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2836 results about "Aluminosilicate" patented technology

Aluminosilicate minerals are minerals composed of aluminium, silicon, and oxygen, plus countercations. They are a major component of kaolin and other clay minerals. Andalusite, kyanite, and sillimanite are naturally occurring aluminosilicate minerals that have the composition Al₂SiO₅. The triple point of the three polymorphs is located at a temperature of 500 °C and a pressure of 0.4 GPa. These three minerals are commonly used as index minerals in metamorphic rocks.

Down-drawable, chemically strengthened glass for cover plate

An alkali aluminosilicate glass that is chemically strengthened and has a down-drawable composition. The glass has a melting temperature less than about 1650° C. and a liquidus viscosity of at least 130 kpoise and, in one embodiment, greater than 250 kpoise. The glass undergoes ion exchange at relatively low temperatures to a depth of at least 30 μm.
Owner:CORNING INC

Long persistent phosphors and persistent energy transfer technique

The invention provides long-persistent phosphors, methods for their manufacture and phosphorescent articles. The invention also provides a method for generating a long-persistent phosphorescence at a selected color. The phosphors of the invention may be alkaline earth aluminates, alkaline earth silicates, and alkaline earth aluminosilicates. The phosphors include those activated by cerium. The phosphors also include those in which persistent energy transfer occurs from a donor ion to an acceptor ion, producing persistent emission largely characteristic of the acceptor ion.
Owner:UNIV OF GEORGIA RES FOUND INC +1

Damage resistant glass article for use as a cover plate in electronic devices

An alkali aluminosilicate glass article, said alkali aluminosilicate glass having a surface compressive stress of at least about 200 MPa, a surface compressive layer having a depth of at least about 30 μm, a thickness of at least about 0.3 mm and an amphiphobic fluorine-based surface layer chemically bonded to the surface of the glass. In one embodiment the glass has an anti-reflective coating applied to one surface of the glass between the chemically strengthened surface of the glass and the amphiphobic coating. In another embodiment the surface of the chemically strengthened glass is acid treated using a selected acid (e.g., HCL, H2SO4, HClO4, acetic acid and other acids as described) prior to placement of the amphiphobic coating or the anti-reflective coating.
Owner:CORNING INC

Electrical-energy-storage unit (EESU) utilizing ceramic and integrated-circuit technologies for replacement of electrochemical batteries

An electrical-energy-storage unit (EESU) has as a basis material a high-permittivity composition-modified barium titanate ceramic powder. This powder is double coated with the first coating being aluminum oxide and the second coating calcium magnesium aluminosilicate glass. The components of the EESU are manufactured with the use of classical ceramic fabrication techniques which include screen printing alternating multilayers of nickel electrodes and high-permittivitiy composition-modified barium titanate powder, sintering to a closed-pore porous body, followed by hot-isostatic pressing to a void-free body. The components are configured into a multilayer array with the use of a solder-bump technique as the enabling technology so as to provide a parallel configuration of components that has the capability to store electrical energy in the range of 52 kW·h. The total weight of an EESU with this range of electrical energy storage is about 336 pounds.
Owner:EESTOR

Alkali activated supersulphated binder

The invention describes an activated supersulphated aluminosilicate binder containing aluminosilicates, calcium sulphate and an activator containing alkali metal salts, wherein the aluminosilicates are selected from the group consisting of blast furnace slag, clay, marl and industrial by-products such as fly ash with the proviso that the Al2O3 content is greater than 5% by weight, wherein blast furnace slag is present in an amount exceeding 35% by weight and clay, marl and / or fly ash is present in an amount exceeding 5% per weight and wherein cement kiln dust in an amount of from 3 to 10% by weight is added to the mixture as an activator and calcium sulphate is used in an amount exceeding 5% by weight.
Owner:HOLCIM

Aluminum-silicate based orange-red phosphors with mixed divalent and trivalent cations

Novel aluminum-silicate based orange-red phosphors, with mixed di- and trivalent cations are disclosed. The phosphors have the formula (Sr1−x−yMxTy)3−mEum(Si1−zAlz)O5, where M is at least one of Ba, Mg, Ca, and Zn in an amount ranging from 0≦x≦0.4. T is a trivalent metal in an amount ranging from 0≦y≦0. This phosphor is configured to emit visible light having a peak emission wavelength greater than about 580 nm. The phosphors may contain a halogen anion such as F, Cl, and Br, at least some of which is substitutionally positioned on oxygen lattice sites. The present aluminum-silicate phosphors have applications in white and orange-red illumination systems, as well as plasma display panels.
Owner:INTEMATIX

Aluminosilicate glass for chemical tempering and glass ceramics

The invention discloses aluminosilicate glass for chemical tempering and glass ceramics, and particularly discloses aluminosilicate glass which contains Li2O and P2O5 and can be chemically tempered. The glass of the invention can realize high ion exchange speed by the addition of 0.01-8 wt% of P2O5. The glass of the invention contains 2-6 wt% of Li2O, which can reduce the glass melting temperature and the glass-transition temperature. The glass of the invention has a low glass-transition temperature (Tg) of 480-590 DEG C, and the glass hardness is at least 600 Kg / mm2. After chemical tempering, the glass of the invention has a large surface stress layer depth (DoL) and a high surface crushing stress (CS). After tempering in pure KNO3, a potassium ion stress layer is formed, which has a DoL of at least 20 microns and a CS of at least 600 MPa. After tempering in a mixed salt of KNO3 and NaNO3 or two-step tempering in KNO3 and NaNO3, a potassium and sodium ion stress layers can be formed simultaneously, which have a DoL of at least 50 microns and a CS of at least 600 MPa. In addition, the aluminosilicate glass of the invention can be converted into glass ceramics through further heat treatment.
Owner:SCHOTT GLASS TECH (SUZHOU) CO LTD

Glass-ceramic materials, precursor glass thereof and process for making the same

The invention relates to: a method of preparing glass-ceramics of β-quartz and / or of β-spodumene; a method of preparing articles made from said glass-ceramics; novel glass-ceramics of β-quartz and / or of β-spodumene; articles made from said novel glass-ceramics; and lithium aluminosilicate glasses, which are precursors of such novel glass-ceramics. The present invention relates to the use, as agent for fining the glass-ceramic glass precursor, of fluorine and at least one oxide of a multivalent element.
Owner:EUROKERA SOC & NOM COLLECTIF

Geopolymer composition and application in oilfield industry

The invention provides geopolymeric compositions, which have controllable thickening and setting times for a wide range of temperatures and a large range of geopolymer slurry densities. The geopolymer slurry compositions have good mixability and pumpability, whilst the set materials develop good compressive strength and permeability. The invention discloses a method for preparing geopolymer for oilfield cementing applications. The geopolymeric compositions according to the invention comprises a suspension comprising an aluminosilicate source, a metal silicate, an alkali activator, lightweight or heavyweight fillers and a carrier fluid wherein the suspension of said geopolymeric composition is pumped in a well and allowed to set.
Owner:SCHLUMBERGER TECH CORP

Olefin epoxidation catalysts

A method of synthesizing an olefin epoxidation catalyst comprises the step of treating a porous crystalline aluminosilicate material having an X-ray diffraction pattern including d-spacing maxima at 12.4+ / -0.25, 6.9+ / -0.15, 3.57+ / -0.07 and 3.42+ / -0.07 Angstrom, such as MCM-22, with a dealuminating agent under conditions effective to remove framework aluminium from the material and produce a dealuminated product. The dealuminated product is then treated with a titanium-containing material under conditions effective to insert titanium into the dealuminated product and produce a titanium-containing, dealuminated catalyst composition. The resultant catalyst is useful in the epoxidation of olefins, such as propylene and cyclohexene, with hydrogen peroxide and organic hydroperoxides.
Owner:MOBIL OIL CORP

Activated aluminosilicate binder

An activated aluminosilicate binder containing aluminosilicates, calcium sulphate and an activator containing alkali metal salts is disclosed. The aluminosilicates are selected from a group consisting of blast furnace slag, clay, marl and industrial by-products, such as fly ash, and has an Al2O3 content greater than 5% by weight. Blast furnace slag is present in an amount less than 35% by weight, and cement kiln dust, in an amount of from 1 to 20% by weight, is added to the mixture as an activator.
Owner:HOLCIM

Methods to improve heteroatom lattice substitution in large and extra-large pore borosilicate zeolites

InactiveUS6790433B2Controlled catalytic propertyAluminium compoundsMolecular sieve catalystsIron saltsAluminosilicate
The invention, in one embodiment, is a method for preparing crystalline zeolites by (a) contacting a calcined essentially aluminum free borosilicate zeolite with an aqueous acid solution, thereby producing an at least partially deboronated zeolite; (b) contacting said at least partially deboronated zeolite with a solution selected from the group consisting of an aqueous aluminum salt solution, thereby producing an aluminosilicate zeolite; an aqueous gallium salt solution, thereby producing a gallosilicate zeolite; an aqueous iron salt solution, thereby producing a ferrosilicate zeolite; and mixtures thereof; and (c) where the contacting in step (b) occurs at a pH of not greater than about 3.5. In another embodiment, the present invention provides a method for preparing crystalline zeolites by contacting a calcined essentially aluminum free large or extra-large pore borosilicate zeolite with a solution selected from the group consisting of an aqueous aluminum salt solution, thereby producing an aluminosilicate zeolite; an aqueous gallium salt solution, thereby producing a gallosilicate zeolite; an aqueous iron salt solution, thereby producing a ferrosilicate zeolite; and mixtures thereof; and where the contacting occurs at a pH of not greater than about 3.5.
Owner:CHEVROU USA INC

Chemically-impregnated silicate agents for mercury control

The present invention is directed to a contaminant removal agent comprising a polyvalent metal sulfide on the surface of an inert substrate. The substrate can be a layered silicate, such as vermiculite, an aluminosilicate such as montmorillonite, or a nonlayered silicate such as a zeolite. The agent removes mercury from process streams. The ion exchange to deposit the polyvalent metal on the substrate is preferably performed at a pH above the pHZPC.
Owner:ENVIRONMENTAL ENERGY SERVICES

Fusion formable silica and sodium containing glasses

Sodium containing aluminosilicate and boroaluminosilicate glasses are described herein. The glasses can be used as substrates or superstrates for photovoltaic devices, for example, thin film photovoltaic devices such as CIGS photovoltaic devices. These glasses can be characterized as having strain points≧535° C., for example, ≧570° C., thermal expansion coefficients of from 8 to 9 ppm / ° C., as well as liquidus viscosities in excess of 50,000 poise. As such they are ideally suited for being formed into sheet by the fusion process.
Owner:CORSAM TECH

Monolithic honeycomb structure made of porous ceramic and use as a particle filter

A monolithic honeycomb-type structure useful in particular as a particle filter for exhaust gases from diesel engines has a number of passages that empty into the end faces of said monolith, but are alternately open and sealed. The monolith consists of a porous refractory material that comprises: 70 to 97% by mass of alpha and / or beta crystallographic-type silicon carbide that has at least one particle size and preferably at least two particle sizes, and 3 to 30% by mass of at least one bonding ceramic phase in the form of a micronic powder or particles that are obtained by atomization, comprising at least one simple oxide, for example, B2O3, Al2O3, SiO2, MgO, K2O, Li2O, Na2O, CaO, BaO, TiO, ZrO2 and Fe2O3 and / or at least one mixed oxide, for example, the alkaline aluminosilicates (of Li, Na, or K) or alkaline-earth aluminosilicates (of Mg, Ca, Sr or Ba), clays, bentonite, feldspars or other natural silico-aluminous materials. The production of the monolith comprises a calcination stage under an oxygen-containing atmosphere at a temperature up to 1650° C., but less than 1550° C.
Owner:INST FR DU PETROLE

Method for producing tempered glass with plurality of surface stress layers and tempered glass product

The invention discloses a method for producing tempered glass with a plurality of surface stress layers and a tempered glass product and particularly relates to a method for producing tempered lithium glass with a plurality of surface stress layers. The method comprises that a mixed salt bath is used for conducting ion exchange in a step, or various mixed salt baths are used for conducting several ion exchange in a plurality of steps. By the aid of the novel chemical tempered lithium aluminosilicate glass and the treatment method of relative glass products, glass with the plurality of surface stress layers and products of the glass are obtained, and the product serves as a high-strength cover plate in electronic devices, household appliances and vehicles. Compared with the prior art, the tempered glass with the plurality of surface stress layers can protect electronic devices, household appliances and vehicles reliably.
Owner:SCHOTT GLASS TECH (SUZHOU) CO LTD

Novel lithium ion battery diaphragm with inorganic coating and preparation method thereof

The invention relates to the field of lithium ion battery diaphragm preparation, and particularly relates to a novel high-temperature-resistant lithium ion battery diaphragm with an inorganic coating, and a preparation method of the diaphragm. The lithium ion battery diaphragm comprises a porous flexible base diaphragm, and a coating coated on both sides of the base diaphragm, wherein the coating is a mixture containing zeolite particles and a bonding agent. The preparation method comprises the steps of dispersing the zeolite particles and the bonding agent in a solvent according to certain ratio to obtain uniform coating slurry; depositing the slurry on both sides of the flexible organic base diaphragm; and drying at certain temperature to obtain the composite diaphragm with good performances. According to the invention, the zeolite particles have excellent performances, high hydrophilicity, developed three-dimensional porous structure and are of an aluminosilicate crystalline structure, so that the high temperature resistance and electrolyte wettability of the diaphragm are improved greatly; and the composite lithium ion battery diaphragm prepared by the method has the advantages of excellent comprehensive performance and the like, and is suitable for large-scale and large-size production.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Geopolymer composite for ultra high performance concrete

A geopolymer composite ultra high performance concrete (GUHPC), and methods of making the same, are provided herein, the GUHPC comprising: (a) a binder comprising one or more selected from the group consisting of reactive aluminosilicate and reactive alkali-earth aluminosilicate; (b) an alkali activator comprising an aqueous solution of metal hydroxide and metal silicate; and (c) one or more aggregate.
Owner:CATHOLIC UNIV OF AMERICA

Thin lithium-aluminosilicate glass for three dimensional precision molding

A thin lithium-aluminosilicate glass is provided. The glass is suitable for three dimensional precision molding and suitable for toughening, wherein after toughening, the glass has a center tension smaller than 50 Mpa, a surface compressive stress of 600-1200 Mpa, and a bending strength of up to 500 MPa. The glass also has a transition point lower than 550° C.
Owner:SCHOTT GLASS TECH (SUZHOU) CO LTD

Methods of fabricating environmental barrier coatings for silicon based substrates

A method of protecting an article from a high temperature environment, the method includes providing a substrate comprising silicon, forming a slurry coating composition, wherein the composition comprises a metallic silicon powder, a rare-earth oxide, an alkaline earth metal oxide, an aluminum oxide, or a combination comprising at least one of the foregoing, and a binder effective to chemically stabilize the slurry coating, applying a layer of the slurry coating over the substrate, and heat-treating the slurry coating under conditions sufficient to oxidize the metallic silicon powder and form an alkaline earth metal aluminosilicate, a rare-earth silicate, an aluminum silicate, or a combination comprising at least one of the foregoing bonded to the substrate.
Owner:GENERAL ELECTRIC CO

Catalyst for treating exhaust gas

Provided is a catalyst composition having an aluminosilicate molecular sieve having an AEI structure and a mole ratio of silica-to-alumina of about 20 to about 30 loaded with about 1 to about 5 weight percent of a promoter metal, based on the total weight of the molecular sieve material. Also provided are method, articles, and systems utilizing the catalyst composition.
Owner:JOHNSON MATTHEY PLC

High strength aluminosilicate glass and chemically toughening process thereof

ActiveCN101337770AMeet the screen saver functionProtective functionGlass tempering apparatusAlkali freeShock resistance
The invention relates to a high-strength aluminate silicate glass and a chemical toughening method thereof, and belongs to the silicate glass field. The glass comprises the following chemical components (weight percent): 55 to 65 weight percent of SiO2, 0.1 to 3 weight percent of B2O3, 6 to 24 weight percent of Al2O3, 3 to 9 weight percent of MgO plus CaO plus BaO plus SrO, 0 to 1 weight percent of ZrO2, 0 to 2 weight percent of ZnO, 0.1 to 0.5 weight percent of Cl2, 0.1 to 1.0 weight percent of Sb2O3, 0.1 to 0.5 weight percent of SO3 and 0.1 to 0.5 weight percent of F2, and belongs to a aluminate silicate glass system. The high-strength aluminate silicate glass is prepared through a known plate glass production method, and then is subjected to the strengthening treatment by adopting the chemical toughening method. The glass has high permeability of visible light, and relatively common soda lime glass, neutral medicine glass and alkali-free high-aluminum glass have good shock resistance property, high scratch resistance property and high durability. The high-strength aluminate silicate glass is applied to the screen surface protection of plasma display products and liquid crystal display products, the protection of touch screens, the screen protection of automated teller machines, and the screen protection of other electronic products (Mobile phones, PDAs and media machines, etc.), thereby effectively preventing the impact and the scratch damage to the glass surface of display products. The high-strength aluminate silicate glass contains no harmful elements.
Owner:SUZHOU SHINWU OPTRONICS TECH

Catalyst for fluidized catalytic cracking of heavy hydrocarbon oil and method of fluidized catalytic cracking

An FCC catalyst which not only deactivates catalyst poison metals, such as nickel, vanadium and the like, in feedstock oils, inhibits the generation of hydrogen or coke, has excellent cracking activity and bottom oil-treating ability, and can yield a gasoline and LCO fraction in high yields, but also retains the performances on a high level over long and has an improved catalyst life; and an FCC method using the catalyst. The FCC catalyst has a compound of a bivalent metal or of bivalent and trivalent metals showing an XRD pattern of a carbonate of the bivalent metal; an inorganic oxide matrix and the compound dispersed therein; or an inorganic oxide matrix and the compound dispersed therein together with a crystalline aluminosilicate zeolite, and relates to an FCC method in which at least one of the catalysts are used in combination with an FCC catalyst obtained by evenly dispersing a crystalline aluminosilicate zeolite in an inorganic oxide matrix.
Owner:GASOLINEEUM ENERGY CENT FOUND +1

Cement Compositions and Methods of Using the Same

The present invention relates to cement compositions and their use in cementing operations. The cements comprise an aluminosilicate; a sodium aluminate, a calcium aluminate, a potassium aluminate, or a combination thereof; and water. In some cases the cement does not include Portland cement. The cement may be used in a subterranean formation having corrosive components therein, wherein the set cement sheath is resistant to degradation from the corrosive components within the subterranean formation.
Owner:HALLIBURTON ENERGY SERVICES INC

Process for the conversion of ethane to aromatic hydrocarbons

ActiveUS20090209794A1Limit initial cracking activitySacrificing activityMolecular sieve catalystsMolecular sieve catalystBenzenePlatinum
A process for producing aromatic hydrocarbons which comprises (a) contacting ethane with a dehyroaromatization aromatic catalyst which is comprised of about 0.005 to about 0.1 wt % platinum, an amount of gallium which is equal to or greater than the amount of the platinum, from about 10 to about 99.9 wt % of an aluminosilicate, and a binder, and (b) separating methane, hydrogen, and C2-5 hydrocarbons from the reaction products of step (a) to produce aromatic reaction products including benzene.
Owner:SHELL USA INC

Light hydrocarbon separation using 8-member ring zeolites

A method of selectively adsorbing propylene in mixtures of propylene / propane and propylene / olefins through the use of zeolites having structures with a maximum of 8-member rings of tetraheda controlling the diffusion rate. Suitable zeolite adsorbents are those having the CHA and ITE structure types. Other 8-member ring zeolites, including aluminosilicates, with a Si:Al molar ratio of at least about 200 and having substantially no free acid are also suitable adsorbents.
Owner:THE TRUSTEES OF THE UNIV OF PENNSYLVANIA

Preparation of composite high-expansion cementing material by using industrial slag and preparation technique thereof

InactiveCN101182143AHigh expansion hole filling abilityCongeal fastCement productionSulfateSlag
The invention relates to a preparation process of using industrial slag to prepare composite cementing materials with high expansibility. The cementing materials consist of four components. The first component includes three parts: one or a plurality of combinations of fly ashes, slag, etc., which contain aluminosilicate; one or a plurality of combinations of phosphogysum, fluorine gypsum, etc., which contain calcium sulfate; one or a plurality of combinations of carbide, alkaline residue, quick lime or slaked lime. The second component includes: one or a plurality of combinations of alkaline composition, such as the quick lime or slaked lime, the carbide slag, etc.. The third component includes one or a plurality of combinations of the phosphogypsum, fluorine gypsum, etc., which contain the calcium sulfate. The preparation method is: firstly, to evenly mix the raw materials of the first component which are grinded to be with the surface area of 200-500m<2> / kg through the steam curing of four hours to ten days at 50-100 DEG C and the calcining of 0.5-24h at the high temperature of 400-1000 DEG C to obtain the first component; secondly, to dry and grind the raw materials of the second and the third component to be with the surface area of 200-500m<2> / kg to obtain the second and the third component; thirdly, to evenly mix the first, the second and the third component.
Owner:BEIHANG UNIV

Corrosion resistant sealant for EBC of silicon-containing substrate and processes for preparing same

InactiveUS20060280955A1More resistant to environmental attackResist attackMolten spray coatingBlade accessoriesAluminateSealant
An article comprising a silicon-containing substrate, an environmental barrier coating (EBC) overlying the substrate, wherein the EBC comprises an outer alkaline earth aluminosilicate barrier layer; and a corrosion resistant alumina / aluminate sealant for the outer barrier layer. A process is also provided for forming a corrosion resistant alumina / aluminate sealant layer over the outer barrier layer of the EBC. Also provided is an alternative process for treating a porous outer barrier layer with a liquid composition comprising an corrosion resistant alumina / aluminate sealant precursor to infiltrate the porous outer barrier layer with the alumina / aluminate sealant precursor in an amount sufficient to provide, when converted to the corrosion resistant alumina / aluminate sealant, protection of the environmental barrier coating against environmental attack; and converting the infiltrated alumina / aluminate sealant precursor within the porous outer barrier layer to the corrosion resistant alumina / aluminate sealant.
Owner:GENERAL ELECTRIC CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products