Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

680 results about "Composite electrolyte" patented technology

Polymer electrolyte, its preparation method and battery comprising the same

The invention provides a polymer electrolyte, its preparation method and a battery comprising the polymer electrolyte. The polymer electrolyte contains a stance phase and an ionic conductive phase adsorbed on the stance phase. The stance phase is an electrostatic spinning fiber film, and the ionic conductive phase includes a polymer able to undergo complexation with lithium ions and a lithium salt. The polymer able to undergo complexation with lithium ions contains an ether oxygen functional group. A bi-continuous phase composite electrolyte film characterized by high mechanical strength, good flexibility, high ionic conductivity, good thermal stability, high interface stability and good electrochemical stability can be obtained, and the preparation process is simple and is low in cost. The prepared material can be widely used in mobile phones, notebook computers and other mobile devices, as well as electric vehicles and other fields, and has strong practical significance to development of the battery industry. The polymer battery involved in the invention is different from liquid or gel state batteries, is free of plasticizer, does not cause leakage and other potential safety hazards, so that it can be used in high temperature environment, and does not have combustion, explosion and other hidden dangers.
Owner:BYD CO LTD

Organic/inorganic composite electrolyte and preparation method thereof

The invention discloses an organic/inorganic composite electrolyte and a preparation method thereof. The organic/inorganic composite electrolyte is obtained by dispersing a lithium salt and a modified inorganic solid electrolyte into a polymer in a mixing manner, wherein the polymer contains an ethylene oxide repeating unit. The modification of the inorganic solid electrolyte is carried out for the first time; a polymer electrolyte and the inorganic electrolyte are effectively and evenly composited, so that the organic/inorganic composite electrolyte material is obtained. The dispersion of the inorganic solid electrolyte in the polymer is improved by the modification of the inorganic solid electrolyte, so that the adverse effect that the inorganic solid electrolyte is automatically gathered is avoided. The organic/inorganic composite electrolyte material obtained according to the preparation method has the advantages of the polymer electrolyte and the inorganic electrolyte, so that the comprehensive performance of the organic/inorganic composite electrolyte material is obviously improved. The organic/inorganic composite electrolyte material has practical value and can be popularized in lithium ion secondary batteries.
Owner:TORAY ADVANCED MATERIALS RES LAB CHINA

Composite electrolyte membrane and preparation method and application thereof

The invention discloses a composite electrolyte membrane and a preparation method and application thereof. The composite electrolyte membrane is a gel-state composite electrolyte membrane or a solid-state composite electrolyte membrane. The preparation method of the composite electrolyte membrane comprises the following steps of adding a macromolecular polymer material into an organic solvent, and performing stirring to obtain a macromolecular polymer material solution; and adding inertia inorganic solid filler and/or active inorganic solid filler, a lithium salt and an ionic liquid, and performing ultrasonic dispersion, stirring, standing and drying to obtain the composite electrolyte membrane. The composite electrolyte membrane has the advantages of high thermal stability, high electrochemical stability, good ionic conductivity, good interface adhesion tightness and the like, is easy to form and can be completely in contact with an electrode material; the preparation method has the advantages of simple process and the like, continuous production can be achieved; and the composite electrolyte membrane can be applied to a solid-state battery, and the solid-state battery shows relatively good cycle stability and rate performance.
Owner:NAT UNIV OF DEFENSE TECH

Preparation method of lithium lanthanum zirconium oxide nanometer fiber, preparation method of composite film and solid battery application

The invention discloses a preparation method of a lithium lanthanum zirconium oxide nanometer fiber, a preparation method of a composite film and solid battery application. Filamentation is carried out on a lithium lanthanum zirconium oxide precursor solution by using a jet airflow and a propelling plant, and the lithium lanthanum zirconium oxide nanometer fiber is obtained after heat treatment is carried out on the collected lithium lanthanum zirconium oxide fiber precursor. Superfine lithium lanthanum zirconium oxide nanometer powder or a lithium lanthanum zirconium oxide nanometer fiber film with certain mechanical property is obtained respectively by regulating the technological parameters and heat treatment temperature of an airflow spinning process. The method is simple in operation and low in cost, and can realize commercialized production. The composite film of the lithium lanthanum zirconium oxide fiber film and polymer provides a continuous lithium ion passage, so that higher ionic conductivity can be provided. The lithium lanthanum zirconium oxide nanometer fiber powder is used for composite ceramic films or composite electrolytes, blockage for membrane holes can be avoided, and higher ionic conductivity can be provided. A solid battery or lithium-ion battery prepared by using the lanthanum zirconium oxide nanometer fiber film or powder is stable in cycle performance, high in rate capability, low in interface impedance and high in stability.
Owner:UNIV OF SCI & TECH BEIJING

Preparation method of flexible quick-charging lithium metal battery

The invention discloses a preparation method of a flexible quick-charging lithium metal battery and belongs to the technical field of lithium batteries. The method comprises the steps of firstly mixing an organic solution of graphene and a carbon nanotube and a binder, and coating the surface of a current collector to prepare a self-supporting pole piece; compounding the self-supporting pole piece and a lithium metal to prepare a lithium-graphene composite electrode or a lithium-carbon nanotube composite electrode or lithium-graphene-carbon nanotube composite electrode; and adopting flexible lithium iron phosphate paper as a positive electrode, composite electrolyte as a diaphragm and the composite electrode as a negative electrode, and assembling to obtain the flexible quick-charging lithium metal battery. The method is simple in operation and significant in effect. The graphene and carbon nanotube skeleton has a high specific surface area, and is capable of effectively reducing the local current density, endowing the electrode with flexible characteristics and achieving fast ion transportation; and the graphene and carbon nanotube skeleton is capable of promoting uniform lithium deposition and inhibiting growth of lithium dendrites, thereby achieving the flexible quick-charging lithium metal battery.
Owner:TSINGHUA UNIV

Flexible composite solid-state electrolyte, full-solid-state lithium-ion battery and preparation method thereof

The invention provides a flexible composite solid-state electrolyte, a full-solid-state lithium-ion battery and a preparation method thereof. The solid-phase mixing of a sulfide solid-state electrolyte or a modifier thereof, a thermoplastic polymer or a modifier thereof and lithium salt enables the composite solid-state electrolyte to have good flexibility while improving the dispersion uniformityand effective contact of each component. A halide, phosphate and / or an oxide are added to the sulfide material especially before the composition of the sulfide solid-state electrolyte and the polymersolid-state electrolyte, thereby providing a multi-dimensional channel for lithium ion transmission, increasing the disordered degree of lithium ion distribution, and being capable of further improving the lithium ion conductivity and electrochemical stability of the composite solid-state electrolyte. The flexible composite electrolyte has the advantages of high lithium conductivity at the room temperature, good electrochemical stability, easy preparation and processing, ability of being bent and cut and the like. The formed flexile full-solid-state battery has good mechanical performance andbending performance, and improves the cycle life and energy density.
Owner:CHINA ACADEMY OF SPACE TECHNOLOGY

All-solid-state battery with low interface resistance and preparation method of all-solid-state battery

The invention discloses an all-solid-state battery with low interface resistance and a preparation method of the all-solid-state battery, the all-solid-state battery comprises an integrated battery cell, and the integrated battery cell comprises a positive electrode current collector layer, a positive electrode layer, a buffer layer, an organic-inorganic composite electrolyte membrane, a negativeelectrode layer and a negative electrode current collector layer which are arranged in sequence; the organic-inorganic composite electrolyte membrane comprises a high-molecular polymer matrix, a lithium salt and an inorganic filler, the high-molecular polymer matrix is selected from polyvinylidene fluoride or a polyvinylidene fluoride-hexafluoropropylene copolymer; the lithium salt is selected from at least one of LiTFSI, LiFSI, LiClO4, LiPF6, LiBF4, LiBOB, LiDFOB and LiPF2O2. According to the invention, a layer of soft contact is formed between hard interfaces of the positive electrode and the negative electrode, multiple layers of films are integrally formed, different component film structures are seamlessly interconnected, and the interface problem of the solid-state battery is effectively improved. The solid-state battery provided by the invention has excellent capacity exertion and cycling stability, and the preparation method is high in efficiency and low in cost.
Owner:SHANGHAI INST OF SPACE POWER SOURCES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products